NASA
Reference
Publication
1329

February 1994

LSENS, A General Chemical
Kinetics and Sensitivity
Analysis Code for
Homogeneous Gas-Phase
Reactions

II. Code Description and Usage

Krishnan Radhakrishnan
and David A. Bittker

NASA
Reference
Publication
1329

1994

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

LSENS, A General Chemical
Kinetics and Sensitivity
Analysis Code for
Homogeneous Gas-Phase
Reactions

II. Code Description and Usage

Krishnan Radhakrishnan
NYMA, Inc.

Lewis Research Center Group
Brook Park, Ohio

David A. Bittker
Lewis Research Center
Cleveland, Ohio

Preface

LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been
developed for homogeneous, gas-phase chemical kinetics computations and contains sen-
sitivity analysis for a variety of problems, including nonisothermal situations. The code is
described in a series of three reference publications, which also provide a detailed guide
to its use and many illustrative test problems.

LSENS has been designed for accuracy, efficiency, flexibility, and convenience. A
variety of chemical reaction models can be considered: static system; steady, one-
dimensional, inviscid flow; reaction behind an incident shock wave, including boundary
layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemi-
cal equilibrium state can be computed for the assigned states of temperature and pressure,
enthalpy and pressure, temperature and volume, and internal energy and volume. Any
reaction problem can be adiabatic, have an assigned heat transfer profile, or for static and
flow problems, have an assigned-temperature profile. For static problems either the den-
sity is constant or the pressure-versus-time profile is assigned. For flow problems either
the pressure or area can be assigned as a function of time or distance. For a static reaction
sensitivity coefficients of the dependent variables and their temporal derivatives with re-
spect to the initial values of the dependent variables and/or the three rate coefficient pa-
rameters of the chemical reactions can be obtained.

LSENS checks the legality and sufficiency of all input. At the user’s option LSENS
checks the reaction mechanism for uniqueness and ensures that each reaction satisfies
charge and atom balance requirements.

Part I of the series (NASA RP-1328), consisting of chapters 1 to 7, presents the theory
and the numerical solution procedures used in LSENS. The ordinary differential equations
(ODE’s) describing chemical kinetics problems are derived in chapter 2. Chapter 3 de-
scribes the numerical integration method and how it is implemented. In chapter 4 the gov-
erning ODE’s for sensitivity analysis are derived and the solution method and numerical
algorithm explained. The governing equations and solution methods for the chemical equi-
librium state, equilibrium and frozen thermodynamic states behind an incident shock
wave, and perfectly stirred reactor problems are presented in chapters 5 to 7.

This volume, part II of the series (chapters 8 to 13 and appendixes A to C), describes
LSENS, its usage, and how to modify it. Chapter 8 describes the computational capabili-
ties and convenience features built into the code. Chapter 9 presents its structure and de-
scription. Chapter 10 lists modifications that may be required to implement LSENS on the
user’s computer system. Chapter 11 provides a guide to code usage and describes how to
prepare the input data files required to execute LSENS. The output information generated
by the code is discussed in chapter 12. Example problems illustrating both problem data
file construction and code usage are given in chapter 13. These examples supplement
chapter 11 by providing additional guidance on preparation of the problem data file.

i

Preface

The partial derivatives required by the numerical solution procedures detailed in chap-
ters 3, 4, and 7 are derived in appendix A. Appendix B shows how to access the system
clock for several common computing systems so that execution times can be measured.
Appendix C describes the modifications required to change the built-in values for various
quantities.

Part III of the series (NASA RP-1330), consisting of appendixes D and E, explains the
example problems provided with LSENS and presents sample results. Appendix D de-
scribes the kinetics test cases. These problems illustrate the various reaction models that
can be solved by, and options built into, LSENS. Appendix E describes the kinetics-plus-
sensitivity-analysis test cases supplied with the code. The examples in the two appendixes
cover a variety of problem types and so should serve as useful models for the structure of
the problem data file required to execute the code. Indeed, it is likely that the desired file
can be produced by modifying one of the test cases.

Details regarding code availability and procurement can be obtained from COSMIC,
328 East Broad Street, University of Georgia, Athens, GA 30602 (Telephone: 706-542-3265).

iv

Contents

List of Figures i i et i i ix
Listof Tables i i i i xi
Symbols e e XV
Chapter 8. Capabilitiesof Code 1
8.1 Types of Chemical Reaction and Rate Coefficient 1
8.2 Assigned Variable and Specification 2
8.3 Assigned-Temperature Problemo i, 2
8.4 Time and Distance Computations for Flow Problem 3
85 HeatTransferModels it i, 4
8.6 Thermodynamic Propertiesottt iniunnnnn 5
8.7 Transport Properties 6
8.8 Simplified CompositionInput i i 6
8.9 Net Reaction and Species FormationRates 7
8.10 Equilibration Factorttt 8
Chapter 9. Code Organization and Description 9
9.1 Introductionttt e e 9
9.2 COMUIOl .ttt et e e e e e 19
9.3 Input/OUtpULt i 21
9.4 Numerical Integration Procedureo, 24
9.5 Sensitivity Analysis 29
9.6 Chemical Equilibrium Computations ce... 33
9.7 Incident Shock Computationscoiiiiiiiiiinanenn.. 35
9.8 Perfectly Stirred Reactor Computationsccovvenieeon... 37
9.9 EITOr MESSAZES « v vttt ittt it ettt ee e et 37
Chapter 10. Code Implementation 39
10.1 Computer Languagettt 39
10.2 Suppressing Underflow Error Messageso vint. 39
10.3 Function SECCPU i i e 39
10.4 Modifying Subroutine XERRWV i 39
10.5 BLOCK DATA Variableso 39
10.6 Reducing Storage Requirement iiiiiiian.. 40
10.7 Code LIimitationsc..oieninititii i 40

10.8 Compiler Optimization Level 40

Contents

Chapter 11. Descriptionof CodeUsage

11.1 Thermodynamic Data Information

11.2 Transport Properties Data o i,
11.3 Problem Data File for SingleCase

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5

11.3.6
11.3.7
11.3.8

11.3.9

TitleLinet e e
Chemical Reactions and Collisional Efficiencies
Inert Species List il
Integration and Assigned Variables, Units, and Fuel Name Line ...
Problem Data, Related Options, Heat Transfer Data, and Output
Controls (Namelist PROB)
11.3.5.1 Problem types and related options
11.3.5.1.1 Staticproblem
11.3.5.1.2 One-dimensional flow problem
11.3.5.1.3 Constant-temperature problem
11.3.5.1.4 Assigned-temperature problem
11.3.5.1.5 Sensitivity analysis
11.3.5.1.6 Chemical equilibrium computations
11.3.5.1.7 Shock tubereaction
11.3.5.1.8 Perfectly stirred reactor (PSR) problem
11.3.5.1.9 Combined PSR-and-plug-flow problem .
11.3.5.1.10 Summaryccoiiiiiininninnennn.
11.3.5.2 Heat transfermodels
11.3.5.3 Reaction mechanismtestscvvvon..
11.3.5.4 Printstationsooiivinninnnnnnnnnenn..
11.3.5.5 Output information specification
Assigned-Temperature Profile (Namelist TMPDAT)
Perfectly Stirred Reactor Problem Data (Namelist WSPROB)
Initial Conditions (and Namelist START)
11.3.8.1 Static and flow kinetics problems
11.3.8.2 Incident shock problem
11.3.83 PSRproblem o i il
11.3.8.4 PSR-plus-plug-flow problem
11.3.8.5 Summary ..ot e
11.3.8.6 Initial mixture compositionc.ccovuvinnon..
Local Error Tolerances and Other Integration Controls
(Namelist SOLVER) i

11.3.10 Sensitivity Analysis Data (and Namelist SENRXN)

11.3.11 FINIS Line
11.4 Problem Data File for Multiple Cases

11.4.1
11.4.2
11.4.3
11.4.4

11.4.5
11.4.6
11.4.7
11.4.8
1149

TitleLine
ACTIONLine e
Integration and Assigned Variables, Units, and Fuel Name Line . ..
Problem Data, Related Options, Heat Transfer Data, and Output

Controls ... e
Assigned-Temperature Profile,
Perfectly Stirred Reactor Problem Data
Initial Conditions i
Local Error Tolerances and Other Integration Controls
Sensitivity AnalysisData i i

11410 FINISLine

Chapter 12. Descriptionof Output

12.1 Introduction
12.2 Static and Flow Kinetics Problems

12.2.1

Standard Outputt e e

vi

47
49
49
49
52
52
52
52
53
53

.53

53
53
55
55
56
57
58
60
62
62
62
62
63
63

Contents

12.2.2 Optional Additional OQutputciiiiiinn... 75
12.3 Sensitivity Analysist i e 76
12.4 Equilibrium and Shock Calculationsoovins, 71
12.5 Perfectly Stirred Reactor Problem 77
12.5.1 Standard Qutputot e 77
12.5.2 Optional Additional Outputot 78
12.6 Summary of Output Information L, 78
Chapter 13. Examplesof Code Usage 81
13.1 KineticS Test Caseso vuvie et iie et cee e ie i iaei e enns 81
13.1.1 Propane-Air, Perfectly-Stirred-Reactor-Plus-Plug-Flow Problem ... 81
13.1.1.1 Problemdatafile i, 81
13.1.1.1.1 Thermodynamic data, title line, and reaction
mechanismdata 81
13.1.1.1.2 Problem setupdata 81
13.1.1.1.3 Reactor inlet and initial conditions 84
13.1.1.1.4 Integration controls for flow problem 84
13.1.1.1.5 FINISlinecoiiiiiiniiinns. 84
13.1.1.2 Sampleresults it 85
13.1.2 Hydrogen-Air Flow Problem and Accuracy of Integration Method .. 85
13.1.2.1 Description of problem datafile 86
13.1.2.2 Computed results and error considerations 86
13.2 Sensitivity Test Case: Constant-Volume, Adiabatic, Static Benzene-Oxygen-
Argon Combustion Reactionot 90
13.2.1 Description of Problem DataFile 90
13.2.1.1 Thermodynamic data, title line, and reaction
mechanismdata i 90
13.2.1.2 Problemsetupdata it 90
13.2.1.3 Initial conditions and integration controls 90
13.2.1.4 Sensitivity analysisdata, 90
13215 FINISHineooniiiiii i 93
13.2.2 Computed Results and Effects of Local Error Tolerances 93
Appendix A. Ordinary Differential Equations and Jacobian
Matrix Elementsttt 107
Net Reaction Rates and Partial Derivatives 0000 .. 107
Non-Third-Body Reaction it 107
Third-Body CatalystReaction 108
Ordinary Differential Equationso iiiiiiiiiaan.a, 109
Species Differential Equations o il 109
Static Reaction i i e 109
AsSigned Pressure oot 109
Constant densityveniiiiiiin i 109
Flow Problemo i 110
Assigned Pressuret 110
Assigned area 110
Assigned area and temperature i iii i, 110
Jacobian Matrix Elementsttt 110
Partial Derivatives of Species FormationRates 111
Static Reactionottt e 111
ASSIgNed Pressureii i e 111
Constant densityc.c.ieiiiiiiin i 112
Flow Problem i i i e 113
ASSIgNed Pressureot 113
Assigned area 114

vii

Contents

Assigned area and temperature 116

Sensitivity Analysisouiuiiiii e 117
Assigned-Pressure Static Problem 117
Constant-Density Static Problem 117
Perfectly Stirred Reactor Problem 117
Assigned-Mass-Flow-Rate Problem 118
Assigned-Temperature Problem 118
Appendix B. Accessing System Clock 119
Appendix C. Code Modifications 121
Referenmces 129

viii

List of Figures

Figure 9.1.—Structure of LSENScode i ... 20
Figure 9.2.—Flowchart of MAIN program, 21
Figure 9.3.—Structure of subroutine KINP 22
Figure 9.4.—Flowchart of subroutine KINP 23
Figure 9.5.—Structure of LSODE packageccoiiiiiininein... 25
Figure 9.6.—Flowchart of subroutine LSODE, as used by LSENS 26
Figure 9.7.—Flowchart of subroutine STODE, as used by LSENS 27
Figure 9.8.—Flowchart of subroutine DIFFUN 28
Figure 9.9.—Flowchart of subroutine PEDERV 29
Figure 9.10.—Flowchart of subroutine SENDDM 30
Figure 9.11.—Structure of subroutine DMSTOD 31
Figure 9.12.—Flowchart of subroutine DMSTOD 32
Figure 9.13.—Structure of chemical equilibrium section 33

Figure 9.14.—Flowchart of equilibrium calculation procedure
(subroutine EQLBRM) i i e 34

Figure 9.15.—Structure of incident shock section 35

Figure 9.16.—Flowchart of incident shock calculation procedure
(subroutine SHOCKS) i i i e 36

Figure 9.17.—Structure of perfectly stirred reactor section 37

Figure 9.18.—Flowchart of perfectly stirred reactor calculation procedure
(subroutine WSR) e e 38

List of Figures

Figure 11.1.—TIllustration of structure of standard thermodynamic data file 42
Figure 11.2.—Transport properties data file supplied with LSENS 43
Figure 11.3.—Structure of problem data file for single (or first) case 45
Figure 11.4.—Structure of problem data file for multiple cases 68
Figure B.1.—Listing of function SECCPU for IBM 370 computer 119
Figure B.2.—Listing of function SECCPU for Amdahl 5870 computer and

VM operating Systemuuuuni i 119
Figure B.3.—Listing of function SECCPU for Amdahl 5870 computer,

UTS operating system, and Fujitsu 77 compiler 119
Figure B.4.—Listing of function SECCPU for VAX computers 120
Figure B.5.—Listing of function SECCPU for CDC Cyber and

Cray COMPULETSttt e 120
Figure B.6.—Listing of function SECCPU for Convex C220 minicomputer,

Alliant FX/S computer, and IRIS workstations 120
Figure B.7.—Listing of function SECCPU for Sun SPARCstation 1 120
Figure B.8.—Listing of function SECCPU for IBM RISC System/6000 120
Figure B.9.—Listing of dummy function SECCPU that can be used if call to

system clock is not available orknown 120

List of Tables

Table 8.1.—Standard oxidant composition built into LSENS 7
Table 9.1.—Description of subprograms used in LSENS 10
Table 9.2.—Routines with common blocks, subprograms, and

calling subprograms i 12
Table 9.3.—Common blocks with variables and subprograms 16

Table 9.4.—Summary of integration methods included in LSODE and
corresponding valuesof METH 24

Table 9.5.—Corrector iteration techniques available in LSODE and corresponding

values of MITER 24
Table 11.1.—Format of reaction line0vviiunn... 46
Table 11.2.—Format of third-body collisional efficiency line 47
Table 11.3.—Units for input variables in the three systems allowed by code 48

Table 11.4.—Description of integration and assigned variables, units, and fuel
name line 48

Table 11.5.—Description of namelist PROB 50

Table 11.6.—Variables that must be set in namelist PROB for different problem
types and related options builtintocode oL 54

Table 11.7.—Variables that must be set in namelist PROB for heat transfer
COMPULALIONS ittt e it e 55

Table 11.8.—Options that specify when output is to be generated and variables that
must be set in namelist PROB foreachoption 56

Table 11.9.—Description of namelist TMPDAT 57

Table 11.10.—Variables that must be set in namelist TMPDAT for assigned-
temperature problemn e 58

Xi

List of Tables

Table 11.11.—Description of namelist WSPROB 59

Table 11.12.—Variables that must be set in namelist WSPROB for perfectly stirred
reactor problem e e 60

Table 11.13.—Description of namelist START 61

Table 11.14,—Variables that must be set in namelist START if simplified-
composition input option is used to specify initial mixture composition 62

Table 11.15.—Summary of thermodynamic and fluid dynamic variables whose

initial values must be set in namelist START 64
Table 11.16.—Description of namelist SOLVER 65
Table 11.17.—Description of namelist SENRXN 67
Table 12.1.—Units for output variables in the three systems allowed by code 75
Table 12.2.—Summary of output i e 79

Table 13.1.—Problem data file for propane-air, PSR-plus-flow example problem .. 82
Table 13.2.—Computed results for propane-air, PSR-plus-flow example problem .. 85

Table 13.3.—Problem data file for hydrogen-air supersonic flow
example problem e 87

Table 13.4.—Variation of computational work and solution with EMAX for
Hj-airexample problem i e 88

Table 13.5.—Variation of computational work and solution with ATOLSP for

Hp-airexampleproblem i 89
Table 13.6.—Reactions for which sensitivity analysis is required for

benzene-oxygen-argon example problemo i o oo 90
Table 13.7.—Problem data file for benzene-oxygen-argon sensitivity

example problem 91
Table 13.8.—Variation of computational work and kinetics solution with EMAX

for benzene-oxygen-argon example problem oL 94
Table 13.9.—Variation of computational work and kinetics solution with ATOLSP

for benzene-oxygen-argon example problem L oL 95
Table 13.10.—Variation of normalized sensitivity coefficient (dYi/do¢ y o) with

EMAX for benzene-oxygen-argon example problem R 96
Table 13.11.—Variation of normalized sensitivity coefficient (3Yi/0Gom, o) With

EMAX for benzene-oxygen-argon example problem 96
Table 13.12.—Variation of normalized sensitivity coefficient (3Y;/doy o o) with

EMAX for benzene-oxygen-argon example problem 97

xii

List of Tables
Table 13.13.—Variation of normalized sensitivity coefficient (3Y;/d0 4,0} with
EMAX for benzene-oxygen-argon example problem 98

Table 13.14.—Variation of normalized sensitivity coefficient (3Y/9T) with EMAX
for benzene-oxygen-argon example problem, 98

Table 13.15.— Variation of normalized sensitivity coefficient (dY#/dpg) with EMAX
for benzene-oxygen-argon example problem, 99

Table 13.16.—Variation of normalized sensitivity coefficient (0Y;/0A) with EMAX
for benzene-oxygen-argon example problem 99

Table 13.17.—Variation of normalized sensitivity coefficient (3Y/dAg) with EMAX
for benzene-oxygen-argon example problem 100

Table 13.18.—Variation of normalized sensitivity coefficient (3Y/dAg) with EMAX
for benzene-oxygen-argon example problem 100

Table 13.19.—Variation of normalized sensitivity coefficient (3Y;/dA12) with EMAX
for benzene-oxygen-argon example problem 101

Table 13.20.—Variation of normalized sensitivity coefficient (3Y;/0A 7) with EMAX
for benzene-oxygen-argon example problem 101

Table 13.21.—Variation of normalized sensitivity coefficient (0Y;/dA1g) with EMAX
for benzene-oxygen-argon example problem 102

Table 13.22.—Variation of normalized sensitivity coefficient (dY/0A 194) with
EMAX for benzene-oxygen-argon example problem 102

Table 13.23.—Variation of normalized sensitivity coefficient {dY/dng) with EMAX
for benzene-oxygen-argon example problem 103

Table 13.24.—Variation of normalized sensitivity coefficient (3Y,/0Eg) with EMAX
for benzene-oxygen-argon example problem 103

Table 13.25.—Variation of normalized sensitivity coefficient (E)Y/ao‘c H, o) with
ATOLSP for benzene-oxygen-argon example problem 104

Table 13.26.—Variation of normalized sensitivity coefficient {dY,/doy 0. o) with
ATOLSP for benzene-oxygen-argon example problem 104

Table 13.27.—Variation of normalized sensitivity coefficient (3Y;/dTy) with
ATOLSP for benzene-oxygen-argon example problem 105

Table 13.28.—Variation of normalized sensitivity coefficient (3Y,/0A) with
ATOLSP for benzene-oxygen-argon example problem 105

Table 13.29.—Variation of normalized sensitivity coefficient (dY;/ong) with
ATOLSP for benzene-oxygen-argon example problem 106

Table 13.30.—Variation of normalized sensitivity coefficient (0Y;/0Eg) with
ATOLSP for benzene-oxygen-argon example problem 106

Xiii

List of Tables
Table C.1.—User-adjustable variables in BLOCK DATAmodule

Table C.2.—Modifications needed to change maximum number of elements
(NLMAX) .

Table C.3.—Modifications needed to change maximum number of species
(LSMAX) ... e

Table C.4.—Minimum length required by real work array RWORK
e, minimum LRW)

Table C.5.—Minimum length required by integer work array IWORK
(e, minimum LIW)o

Table C.6.—Modifications needed to change maximum number of reactions
(LRMA X)) .

Table C.7.—Modifications needed to change maximum number of third-body
reactions (TBRMAX)t s

Table C.8.—Modifications needed to change maximum number of species with
third-body efficiencies different from unity (TBSMAX)

Table C.9.—Modifications needed to change maximum number of tabular values
for assigned variable (pressure or area) and temperature (NTBMAX)

Table C.10.—Modifications needed to change maximum number of print stations
(NPM A X)) e

Xiv

Symbols

4,

(Aj)o

ATOLSP

AVH

4

a; x» bi,Kv
Cixo di,K

ai,u’ bi,]J.’
Ci s di,}l

aj 15.-08i7

ap, ay, az, az

B

flow cross-sectional area

preexponential factor in forward rate coefficient expression for
reaction j

preexponential factor for third-body collisional reaction with species k as
collision partner

preexponential factor for third-body collisional reaction with standard
species as collision partner

area ratio, defined by equation (12.16)

shock tube cross-sectional area or area of curved surface of Otto-cycle
engine cylinder

nozzle throat area used in rocket performance calculations, in.?

assigned variable (pressure or area) for kinetics problem

local absolute error tolerance for reacting species mole numbers, used in
solving chemical kinetics ODE’s

average step size used by integrator
defined by equation (A45)

coefficients in equation (8.38) for thermal conductivity of species i

coefficients in equation (8.37) for dynamic viscosity of species i

coefficients in equations (8.32) to (8.34) for thermodynamic properties of
species i

coefficients in cubic polynomial expression for velocity, equation (8.15)

cylinder bore of Otto-cycle engine

XV

Symbols

Ct,O’ Ct,17
Ct,27 Ct,3

Ce,.00 Ce, 15
C;;A,z, CgA,3

Ce 00 Ce 1
Ce 2, Ce 3

CPU

‘p

CP, i

EMAX

EQL

[

defined by equation (A46)

units conversion factor used in equation (A44)

molar concentration of ith species

coefficient in equation (8.44) for Sutherland interaction constant

total molar concentration of catalyst species, equation (A16)

constants in polynomial pressure-time expression, equation (8.9)

constants in polynomial expression, equation (8.10), for assigned
variable (pressure or area)

constants in polynomial expression, equation (8.13), for temperature

central processing unit (i.e., execution) time
sonic velocity

characteristic velocity, equation (12.17), in rocket performance
calculations

thrust coefficient, equation (12.18), in rocket performance calculations

rate coefficient parameter in special rate coefficient expression,
equation (8.4)

constant-pressure, mass-specific heat of mixture

constant-pressure, molar-specific heat of species i

diameter of flow cross section

heat transfer function defined by equations (A36), (A41), and (A47)
shock tube hydraulic diameter

activation energy in forward rate coefficient expression for reaction j

equilibration factor for reaction j, equation (8.61)

local relative error tolerance for dependent variables, used in solving
chemical kinetics ODE’s

logical variable defined within code and denoting type of incident shock
calculation—equilibrium or frozen

vector proportional to local truncation error vector in solution to
chemical kinetics ODE’s

Xvi

FIO

FSUM

fi

fla

AGy;

8c
Gi

(o]

Tj

HT’(), HT,b
Hry, Hrs,
Hra

HMAX
HMIN
HT1

HT2

ICALL

Symbols
fuel-oxygen molar ratio

sum of squares of Newton-Raphson functionals in PSR calculation

first derivative of ith dependent variable y; with respect to independent
variable §

fuel-oxidant mass ratio

Newton-Raphson functional for ith dependent variable in PSR
computation

standard-state (1 atm) Gibbs function change at temperature T for
reaction j, equation (8.8)

units conversion factor used in equations (12.14) and (12.17)
molar-specific Gibbs function of species i

standard-state (1 atm) enthalpy change at temperature T for reaction j,
equation (12.10)

coefficients in equation (8.21) for heat transfer rate Q (or Q’) as
polynomial function of temperature

integration step size

maximum step size to be attempted by integrator on any step
minimum step size to be attempted by integrator on any step
denotes heat transfer model 1 defined by equation (8.21)
denotes heat transfer model 2 defined by equation (8.22)
heat transfer coefficient, equations (8.25) and (8.28)
mass-specific enthalpy of mixture

integration step size on step [E,-1,5,]

single quantum of radiation

molar-specific enthalpy of species i

specific impulse, equation (12.14)

vacuum impulse, equation (12.15)

integer variable defined within code and indicating how many more steps
are to be taken with current step size and method order

integer variable defined within code and indicating whether present call
to integrator is first one for problem

Xvii

Symbols
ICPU

INST
ISTATE

ITASK

JSTART,
KFLAG

J

19N

R

£

=

METH

MF

MITER

incremental CPU time since last output of results
incremental number of integration steps since last output of results
integer variable defined within code and indicating state of integration

integer variable defined within code and indicating task to be performed
by integrator

iteration number for PSR computation
identity matrix

integer variables defined within code and used for communication
between integration subprograms

Jacobian matrix, used in solution of ODE’s for chemical kinetics and
sensitivity coefficients, equation (9.2)

concentration equilibrium constant for reaction j, equation (8.6)

forward (eqs. (8.3) and (8.4)) and reverse (eq. (8.5)) rate coefficients for
reaction j

characteristic length for shock tube kinetics calculations, equation (9.5)
cylinder stroke of Otto-cycle engine

perimeter of flow cross section, equation (8.23)

integration method coefficient vector

zeroth component of £

third-body efficiency factor for reaction j, equation (A17)
mixture molar mass

molar mass of species i

general third-body collision partner in third-body reaction

identifies integration method to be used for solving chemical kinetics
ODE’s (see eq. (9.1))

method flag that specifies both integration method and corrector iteration
technique to be used for solving chemical kinetics ODE’s, equation (9.1)

identifies corrector iteration technique to be used in integrating chemical
kinetics ODE’s (see eq. (9.1))

Mach number

mass

Xviil

NCF

NCONV

NFE

NINERT

NITER

NJE

NQ
NQMAX
NR

NRS

NS

NSTEP

nc

ny

Symbols
mass flow rate

mass flow rate to start iteration for first solution of assigned-temperature
PSR problem

logarithmic correction of mass flow rate for assigned-temperature PSR
calculation

mass flux (mass flow rate per unit cross-sectional area)
relative third-body efficiency of species £ in reaction j, equation (A18)

number of ODE’s in integration problem or number of algebraic
equations in PSR problem

number of entries in assigned-variable (pressure or area) table
number of entries in assigned-temperature table

number of convergence failures on integration step while solving chemi-
cal kinetics ODE’s

convergence number for PSR calculation

total number of derivative evaluations required by chemical kinetics
ODE solver for problem

number of inert species in mixture

total number of iterations for equilibrium, shock, or PSR calculation

total number of Jacobian matrix evaluations required by chemical
kinetics ODE solver for problem

method order for integration step

maximum method order to be attempted on any step
number of chemical reactions in reaction mechanism
number of reacting species in mixture

number of (reacting plus inert) species in mixture

total number of integration steps required by chemical kinetics ODE
solver for problem

number of carbon atoms in one molecule of fuel
number of hydrogen atoms in one molecule of fuel

temperature exponent in forward rate coefficient expression for
reaction j

Xix

Symbols
An;

no
Pr

PEFSUM

Qe

Re

RHDN

RHOCON

RHSM

RHUP

RMAX

RPM

change in number of moles for jth reaction, equation (8.7)
number of oxygen atoms in one molecule of fuel

Prandtl number, equation (8.27)

FSUM on previous iteration in PSR calculation

iteration matrix, used in solution of ODE’s for chemical kinetics and
sensitivity coefficients, equation (9.3)

pressure

rocket chamber pressure, psia
heat transfer rate

heat transfer rate per unit length
method order for integration step
universal gas constant

forward (eqgs. (A3) and (A19)) and reverse (egs. (A4) and (A20)) molar
reaction rates per unit volume of reaction j

ratio of integration step size to be attempted next to its current value
Reynolds number, equation (8.26)

ratio of integration step size to be attempted next to its current value if
method order is to be decreased

logical variable that indicates whether density is constant

ratio of integration step size to be attempted next to its current value if
method order is to be unchanged

ratio of integration step size to be attempted next to its current value if
method order is to be increased

maximum factor by which integration step size can be increased when
step size change is next considered

Otto-cycle engine speed, rpm
net molar rate per unit volume of reaction j, equation (8.57)

ratio of mole fraction of oxidant species i to that of oxygen,
equation (8.47)

Sutherland constant for species i

XX

Ty

TCONST

TCPU

TOUT

Symbols
sensitivity coefficient of ith dependent variable with respect to jth
sensitivity parameter or Sutherland interaction constant for species i
and j, equation (8.44)

normalized sensitivity coefficient of ith dependent variable with respect
to jth sensitivity parameter

sum of mass fractions of all species, equation (12.11)

sensitivity coefficient vector with respect to jth sensitivity parameter
chemical symbol for species i

defined by equation (A34) or (A39)

defined by equation (A35)

mass-specific entropy of mixture

molar-specific entropy of species i

temperature

logarithmic correction of temperature for assigned-mass-flow-rate PSR
calculation

equilibrium temperature
wall temperature

logical variable defined within code and indicates whether temperature is
constant

total CPU time for problem

next value of independent variable at which solution to ODE’s is required
time

mass-specific internal energy of mixture

flow velocity

volume

mass-specific volume of mixture

net molar production rate per unit volume of species i, equation (12.8)
total energy exchange rate, equation (12.9)

net energy exchange rate for reaction j, equation (12.13)

Xxxi

Symbols

X; net reaction conversion rate for reaction j, equation (8.56)
x distance

X; mole fraction of species i

X; mole fraction of species i in oxidant

Y; ith component of Y

Y numerical solution vector to chemical kinetics ODE’s

¥i exact solution of ith dependent variable for chemical kinetics problems or
mass fraction of species i

Vi mass fraction of species i in oxidant
Z{k) kth column of Z;
Z; Nordsieck history matrix for sensitivity coefficients with respect to jth

sensitivity parameter

z Nordsieck history matrix for solution to chemical kinetics problem

B shock tube boundary layer thickness parameter

Bo integration method coefficient (see eq. (9.3))

r quantity defined by equation (12.22)

Y frozen specific heat ratio of mixture, equation (12.4)

3 Kronecker symbol, equation (A150)

n exponent in equations (9.4) and (9.5) for shock tube flow area and

characteristic length

uf Jjth sensitivity parameter

X thermal conductivity of mixture

X; thermal conductivity of species i

A, Ay underrelaxation factors used in controlling magnitude of corrections in

PSR computation

n dynamic viscosity of mixture
in dynamic viscosity of species i
Vi, vy stoichiometric coefficients of reactant and product species i in

reactions (8.1) and (8.2)

Vij, Vij stoichiometric coefficients of reactant and product species i in
reaction j

Xxii

Symbols
& “integration variable” (i.e., independent variable for chemical kinetics
ODE’s)—time or distance

& independent variable (time or distance) for assigned-variable (pressure or
area) profile

Er independent variable (time or distance) for temperature profile

p mixture mass density

G mole number of species i—moles of species i per unit mass of
mixture

Aln G; logarithmic correction of mole number of species i for PSR calculation

Om sum of mole numbers of species, equation (12.23)

T, average residence time for PSR

6} fuel-oxidant equivalence ratio

by interaction term used to calculate mixture dynamic viscosity,
equation (8.40)

7¢,-j interaction term used to calculate mixture thermal conductivity,

equation (8.42)
quantity defined by equation (A32)
Q cranking angular velocity of Otto-cycle engine, equation (8.31)

) net molar formation rate of species i per unit volume by reaction j,
equation (8.58)

Subscripts:

air oxidant

f fuel

N index for either temperature or mass flow rate in PSR calculation
NR index for density derivative in chemical kinetics calculation

NT index for temperature derivative in chemical kinetics calculation
NV index for velocity derivative in chemical kinetics calculation

n value at €,

out value at next output station

s stoichiometric

st standard conditions (1 atm)

XXiii

Symbols

0 initial condition value

1 condition upstream of incident shock wave or assigned value for first
solution of PSR problem

2 condition downstream of incident shock wave

Superscripts:

) Jjth derivative

[m] value at mth iteration

[0l predicted value

standard state (1 atm)

value at perfectly stirred reactor inlet

XX1V

Chapter 8
Capabilities of Code

The LSENS code has been designed for the following
reaction models and computations:

(1) Static reaction either at constant density or with as-
signed pressure

(2) One-dimensional flow reaction with an assigned pres-
sure or area profile

(3) Static or flow reaction with an assigned temperature
profile

(4) Sensitivity analysis for a static reaction

(5) Equilibrium reaction

(6) Reaction initiated by an incident shock wave

(7) Reaction in a perfectly stirred reactor

Any kinetic reaction problem for which temperature is not
assigned may either be adiabatic or have a prescribed rate of
heat exchange with its environment.

In this chapter we describe the computational capabilities
of LSENS. We also discuss convenience features and the
calculation procedures used for the thermodynamic and
transport properties.

8.1 Types of Chemical Reaction and
Rate Coefficient

Many different types of elementary chemical reaction are
considered. In addition, provision has been made for both
reversible and irreversible reactions. Each reaction is as-
sumed to involve up to a maximum of two different reactant
species and two different product species and thus can be
written in the general form

VI8, + V38, = V38, + V]S, (8.1)

where v/ is the stoichiometric coefficient (i.e., number of
moles) of reactant species i in the reaction, v/ is the stoichio-

metric coefficient of product species i in the reaction, and §;
is the chemical symbol for species i. In equation (8.1) spe-
cies 8; and/or 84 may be either absent or the general third-
body collision partner M. Therefore all collisional processes,
including isomerization and spontaneous activation and deac-
tivation of excited species, are considered. In addition, pho-
tochemical reactions of the following type are allowed:

hv+Vv58, = vi8, + V58, (82

where hv represents a single quantum of radiation absorbed
by the reactant. This reaction is an irreversible decomposi-
tion.

All reactions are assumed to be elementary (i.e., real
molecular events, e.g., ref. 1), so that the {v;} and {v;'} are
integers. Also all species are assumed to be ideal gases. For
each reaction j, irrespective of its type, the forward rate coef-
ficient &; is usually given by the empirical expression (ref. 2)

€ = AT oxp| oL 8.3
j= AT exp| — (8.3)

In this equation the preexponential factor Aj, the temperature
exponent n;, and the activation energy E; are constants, R is
the universal gas constant, and T is the temperature. Provi-
sion has also been made for the following alternative form of
the rate coefficient expression (ref. 3):

k; = A;T" exp(c;T) (84)

where ¢; is a constant.

The backward rate coefficient k_; need not be specified for
a reversible reaction. For both forward rate coefficient
expressions k_; is computed within the code by using the
principle of detailed balancing or microscopic reversibility
(refs. 1 and 4):

8. Capabilities of Code

k.= o (8.5)

—_j Kc,j
Here K ; is the concentration equilibrium constant for reac-
tion j and for a given temperature is computed as follows

(ref. 4):

)-Aﬂ _AG;",I

K ;= (RT) ™ exp — (8.6)

In this equation An; is the change in the total number of
moles when the reactants are converted into products

4 2
Anj =3 VE= Y Vj (87)

where v;; and v are, respectively, the stoichiometric coeffi-
cients of reactant species i and product species i in reaction j.
The term AG#%;j is the standard-state (here 1 atm) Gibbs func-
tion change for the jth reaction at temperature T

4 2
AGT; =Y viige(T) = Y vigp(T) (88)
i=3 i=1

where ¢ (T) is the standard-state Gibbs function of species i
at temperature 7. The calculation procedure for g7 is de-
scribed in section 8.6.

8.2 Assigned Variable and Specification

For a static problem the density p is constant or the pres-
sure p is specified, either as a constant or as a function of
time 7. The following two methods for specifying the pres-
sure-time profile are built into the code: (1) as a polynomial
function of up to third degree

pt)=Cro+ Cryt+Cra? + Cya (8.9)

where the {C, ;] are constants, and (2) in tabular form,
wherein the pressure p; (i = 1,...,N,) is assumed to be given at
each of the Ny discrete points #; (i = 1,...,Ny).

For a flow problem the pressure p or the area A is assigned,
either as a constant or as a function of time or distance, inde-
pendently of the choice of the independent variable & for the
governing ordinary differential equations (ODE’s). For clar-
ity in presentation we will refer to & as the “integration vari-
able.” To specify the assigned variable (pressure or area),
that is, the variable that can be assigned as nonconstant, the
two methods given previously for a static problem are avail-

able. If we represent the assigned variable by A, and the
variable it is a function of by &4, the third-degree polynomial
representation used in the code is given by

AV(E_uA) = CgA,O +C§A’l &A +C§A’2 E‘,i + C&AvS &i (810)

where the {Ce A’j} are constants. The second method requires
values for 4 ; (i = 1,...,N,4) and the corresponding Ay
(i = 1,...,Na) at the N discrete points.

For both static and flow problems A, and its first deriva-
tive dA/d§ must be evaluated for a given value of & (see the
equations in appendix A). Because the p-t profile for a static
problem is a particular case of the A,-&4 profile for a flow
problem, we restrict discussion to the latter case. However,
there is one fundamental difference between the two cases.
For static problems &4 (=) and & (= ¢) are the same, but they
may be different for a flow problem. We postpone to section
8.4 a description of how &4 is calculated and will assume in
the rest of this section that it is known.

If the assigned variable profile is specified by a polyno-
mial, its value is obtained from equation (8.10), its first de-
rivative with respect to &4 is given by

dA 2
— = C&A’l +2C§A’2 éA +3C§A73 (E:,A

(8.11)
dg ,

and dA,/d§ is then computed by using the chain rule of
differentiation as

14

Ay _ by &5y
& e, dE

(8.12)

When the assigned variable profile is specified in tabular
form, Ay and dA,/d& are determined by cubic spline interpo-
lation with parabolic runout at the end conditions (e.g.,
refs. 5 and 6); dA,/dC, is then given by equation (8.12).

8.3 Assigned-Temperature Problem

The temperature of the reacting system may be assigned
for both static and flow problems, either as a constant or as a
function of time or distance, independently of both & and &4.
The same two methods described in section 8.2 for the
assigned variable are built into the code for specifying the
temperature.

If we denote by &7 the variable that T is assigned as a
function of, the polynomial representation used in the code is
given by

TEr)=Cy o+Ce 1 br+Ce 267 +C 367 (B13)

where the {Cg,.,;} are constants. The tabular form of profile
specification requires values for &r; (i=1,...,N7) and
the corresponding T; (i = 1,...,N7) at the Ny discrete points. In
either case T and its first derivative d7/d€ must be evaluated
for a given €. For a static problem &y =& (=1), but for a flow
problem &7 may be different from & and, if so, is evaluated as
described in section 8.4.

The procedures for computing T and d7/dg, are exactly the
same as those described in section 8.2 for computing the as-
signed variable and its first derivative. For a polynomial rep-
resentation T and d7/dEy are obtained from equation (8.13).
If the temperature is specified in tabular form, the same cubic
spline interpolation routine used to compute the assigned
variable and its first derivative gives T and dT/d& 1. In both
cases, if E7# &, the chain rule of differentiation, analogous (o
equation (8.12), is used to calculate dT/dE.

8.4 Time and Distance Computations
for Flow Problem

As discussed in sections 8.2 and 8.3, for a flow problem
the independent variable &4 for the assigned variable (pres-
sure or area) and/or the independent variable &7 for the tem-
perature may be different from the integration variable &. It
is therefore necessary to compute the distance x (or time ¢)
when time (or distance) is the integration variable. The most
obvious way of accomplishing this objective is to treat dis-
tance (or time) as an additional dependent variable when time
(or distance) is the integration variable and solve its ODE.
For example, if time is the integration variable, the ODE for
distance is given by

dx _
dt

(8.14)
x(t = tO) = Given

where Vis the velocity. However, this method introduces
another ODE and increases the size of the iteration matrix.
In the present work an alternative, easier calculation proce-
dure, a cubic spline interpolation that is described here, is
used to compute x (or t) from ¢ (or x).

The ODE solver used in LSENS generates numerical solu-
tions at discrete points &, (n = 1,2,...). We assume that time
is the integration variable and that the solution has been ad-
vanced over the time step [t,—1,t,] of size h, (=t, — t,—1).
We now assume that V varies locally (i.e., in the interval
[t,—1,24]) as a cubic polynomial

8.4 Time and Distance Computations for Flow Problem

V(1) = ag + ait + af® + a3t3 (8.15)

where the constants {a;} have to be determined. By requir-
ing that V and dV/dt satisfy the constraints

dv

" (8.16)

dv
dt

where V,, and ‘;n are the numerical solution values for V and
dvldt at t = t,, we can solve for the four unknowns gg to as.
Substituting the solutions for these quantities into equa-
tion (8.15) and rearranging terms gives

vie)=V,_,+ (t - tn_l) f/,,_l

-t . .
= 3V, -3V, ~h Va=2h Va
n
t—t,_, . .
-l = 2V, =2V, ~h Va=h Voo | (8.17)
n

The derivatives \;,l_l and ‘;,, are obtained from the Nordsieck
history arrays z,— and z,, respectively. This history array
contains the solution and its scaled derivatives. Substituting
equation (8.17) into equation (8.14), integrating over the
interval [#,_1,t,], and collecting terms give the following
expression for x,;:

Vo +V Vn_1—V
x,,=x,l_1+h,,["-12+ ")+h,% Vi 1‘2 %1 (8.18)

If distance is the integration variable, we replace A, in
equation (8.18) by the difference ¢, ~— t,,—, where 1, is

8. Capabilities of Code

known and ¢, has to be computed. Also, we replace the dif-
ference x, — x,—1 by h,, the step size used on the step
[xg—1.x,]. Finally, because x is the integration variable, we
use the chain rule of differentiation to replace dV/dt by
VdV/dx (= VV). The resulting equation can then be regarded
as a quadratic equation in the quantity ¢, — ¢,_1. Its solution
is given by

12
'(Vn-1+V,,)+ (Vn_1+V,.)2 +4h, %ﬂ__n_

t -1

8.19)

where we have used the positive root to ensure that ¢ increases
as the integration proceeds. (Because the overall reaction prob-
lem is irreversible, we can solve the governing ODE’s only
for increasing ¢.) The difficulty with equation (8.19) is the
possibility of overflows if V,_V,_; = VnVp. For example,
for constant-velocity flow V,,_;=V,and V,,_1 =V, (= 0),
and this condition is obtained. We avoid this difficulty
by multiplying both the numerator and denominator of equa-
tion (8.19) by the quantity

172

, S
Vaci +V +| (Vaci + V)~ + 4, V"—-l‘fﬂélﬂm

Performing this operation and then simplifying the resulting
expression give the following equation for ¢,:

4h
tn = tn—l = /2
2 V.V VvV
V.
Vo +V, + (‘]n—]+Vn) +4h,| ~A~2n=l N _n

(8.20)

which avoids the problem of overflow errors.

8.5 Heat Transfer Models

The heat transfer rate between a reacting system and its
surroundings is in general a function of the reacting gas and
ambient temperatures, as well as flow rate and geometry. It

is most likely that exact heat transfer rates will not be known
when modeling an experimental reacting system. Therefore
the main usefulness of the code will be in determining the
effects of various assumed heat transfer rates. It was previ-
ously assumed (ref. 7) that the simplest expression for the
heat loss rate is a polynomial function of the reacting mixture
temperature. Therefore the standard option for specifying the
heat transfer rate Qfor a static problem or the heat transfer
rate per unit length in the flow direction Q" for a flow prob-
lem is given by the polynomial expression

A 2 3 4
QorQ)=Hyg+Hp T+Hp, T>+Hpy T+ Hy) T
8.21)

where the {Hr;} are constants. Note that Q (or Q’) can be
made negative to simulate a heat source for an ignition prob-
lem. This heat transfer model is also used to compute the
heat transfer rate for a perfectly stirred reactor problem.

For one-dimensional flow problems another calculation
procedure for Q' is included in LSENS. In this model Q’ is
given by the following empirical expression (e.g., ref. 8):

Q'=HL(T—-T,) (8.22)
where I is the heat transfer coefficient (heat transfer rate per
unit surface area per unit temperature difference), L, is the
perimeter of the flow cross section, and T, is the wall tem-
perature. For a cylindrical tube of diameter D the cross-
sectional area A = tD?/4, so that

L, =7D =2VTA (8.23)
Substituting this equation into equation (8.22) gives
0'=2VmAT - T,,) (8.24)

Many correlations can be used to estimate H (e.g., ref. 8).
For turbulent flow we use the following empirical correla-
tion:

HD

== =0023Re"8pr 03 (8.25)
K

In this equation Re and Pr are, respectively, the Reynolds and
Prandtl numbers:

Re= YD (8.26)
u
and
pr="50 8.27)
K

where W, Cp, and x are, respectively, the mixture dynamic vis-
cosity, mass-specific heat at constant pressure, and thermal
conductivity. These properties are evaluated at the fluid bulk
temperature, which is equal to the reacting fluid temperature
for one-dimensional flow (ref. 8). The thermodynamic prop-
erty ¢, and the transport properties | and K for the mixture
are computed by using the empirical equations given in
sections 8.6 and 8.7, respectively. The correlation given by
equation (8.25) is used for flows with Re = 2300. For
laminar flow (Re < 2300) the following correlation is used
(ref. 8):

HD

———=4364 (8.28)
X

This model is used to compute the heat transfer rate per
unit mass of reacting mixture O/m for one special static
reaction application—the assigned-pressure, variable-volume
reaction in the cylinder of an internal combustion, or Otto-
cycle, engine. We assume that the cylinder has diameter B
(bore) and length L, (stroke) and that heat transfer occurs
only through the curved cylindrical surface. The heat trans-
fer rate per unit mass of mixture is then given by

_'Q__ HA(T-T,) 4T-T,)
m pV B Bp

(8.29)

where A; is the instantaneous area of the curved surface, Vs
the instantaneous chamber volume, and we have used the fact
that V/Ag = B/4 for a cylinder. To compute H, we use the
correlation of equation (8.25) or (8.28) with D replaced by B
and the Reynolds number computed by (ref. 9)

Re = pL QB
T

(8.30)

where Q is the cranking angular velocity in radians per sec-
ond and is calculated from the engine speed RPM in revolu-
tions per minute by

0= TTRPM
30

(8.31)

8.6 Thermodynamic Properties

The thermodynamic properties of the species are computed
by using the empirical equations given by Gordon and

8.6 Thermodynamic Properties

McBride (refs. 10 and 11). For each species i the non-
dimensional properties molar-specific heat at constant pres-
sure ¢, ;/R, molar-specific enthalpy hi/RT, and the 1-atm
molar-specific entropy ¢¥/R are specified as functions of
temperature

O .
% = a1+ a 2T+ a; 3T +a; 4T + a;sT* (8.32)

¢ a. a. a.
=a,InT+a,T+-2272 4 2473, A3 ph 4 g
, A 3 4 b

(8.34)

In these equations R is the universal gas constant and the de-
gree sign indicates standard conditions (here pressure of
1 atm). This superscript is not attached to the specific heat
and enthalpy because the two properties are independent of
pressure for ideal gases.

For each species i the seven coefficients a; ; to a; 7 are
computed with the Properties and Coefficients (PAC) code of
McBride and Gordon (ref. 12). For ideal gases this program
first calculates thermodynamic properties from molecular
constant data given in the JANAF thermochemical tables
(e.g., ref. 13) and then reduces them to coefficient form. For
each species two sets of coefficients for use on two adjacent
temperature intervals, 300 to 1000 K and 1000 to 5000 K, are
included. The data are constrained to give the same results at
1000 K.

Another thermodynamic property that is required for
chemical kinetics computations is the standard-state, molar-
specific Gibbs function g§. The normalized Gibbs function
g7RT is given by

9 h.— Te®

4 1

8.35
RT RT (8.3

The thermodynamic properties {d¢, ;/dT} may also be
required and are obtained by differentiating equation (8.32)
with respect to T.

The thermodynamic properties of the reacting gas mixture
are evaluated by applying Gibbs theorem (e.g., ref. 14), that
is, by simply summing the contributions made by each spe-
cies: for example, the mixture mass-specific enthalpy A is
given by

8. Capabilities of Code

(8.36)

NS
h= Eki o;
i=1

where ©; is the number of moles of species i in unit mass of
mixture and NS is the total number of (reacting and inert)
species.

8.7 Transport Properties

The transport properties of the species are computed by
using the empirical equations given by Zeleznik and McBride
(ref. 9); see also Gordon et al. (refs. 11 and 15). For each
species i the dynamic viscosity |; and the thermal conductiv-
ity x; are specified as functions of temperature in the form
used by Maitland and Smith (ref. 16):

b. C.

Inp,=q In T+—’7’1—”+7%l+ d;, (8.37)
b, c;

Ink;=a,In T+’—;+T’+;+dix (8.38)

The coefficients in these equations are obtained by least-
squares fitting and give viscosity in units of micrograms per
centimeter-second and thermal conductivity in units of
microcalories per second-centimeter-Kelvin.

The transport properties | and x for the gas mixture are
also computed by using the procedures given by Zeleznik
and McBride (ref. 9). The mixture viscosity is calculated
with the formula suggested by Wilke (refs. 17 and 18):

NS NS
w=>>u o/ > o50; (8.39)
i=1 =1
where
2
12 /4
. M .
21+ B L
H; M,
¢ = (8.40)

R
4 1+-2L
Mw,j

where M,,; is the molar mass of species i.
For the mixture thermal conductivity the formula proposed
by Lindsay and Bromley (ref. 19) is used:

NS NS
“=2‘<i G; 2¢,~,~0,- (8.41)
i=1 j=1
where
2
3/4 1/2
o L M,,j 1+S,/T 1+8,/T
iy wi M, 1+S,/T 1+ 8,/T
(8.42)

In this equation S; is the Sutherland constant for the ith spe-
cies and Sj; is the Sutherland interaction constant for species
i and j (refs. 9 and 15). The constant S; is obtained from the
viscosity as follows (ref. 9):

1
S. .
1420 = [3 —dl“—”lJ (8.43)

T 2 dinT

The constant §j; is generally assumed to be of the form
(refs. 9 and 15)

Sij = CU JS,SJ

where Cj; is a constant. Lindsay and Bromley (ref. 19)
recommend the value C;; = 1, except when one of the species
i and j is highly polar. For this case the value C;; = 0.733 is
suggested (ref. 9). We use C;; =1 for all pairs of species ex-
cept those involving water, for which Cj; is set equal to 0.733.

(8.44)

8.8 Simplified Composition Input

The initial mixture composition may be specified by
means of the species mole fractions x; (i = 1,...,NS) or mass
fractions y; (i = 1,...,NS). The internal composition variables
{o;} are then computed by

o, =—*5L — i=1,.,NS (8.45)

or

o, =—), i=1..,NS

w,i

(8.46)

The code also includes the option of specifying the initial
composition for any reaction involving the general hydrocar-
bon fuel C, H,, O, by the simple means of either the fuel-
oxidant equivalence ratio ¢ or the fuel-oxidant mass ratio f/a.
The oxidant may contain oxygen, nitrogen, argon, and carbon
dioxide in any proportion. A “standard air” oxidant has been
built into the code, but the user has the option of changing it.
The composition of this oxidant is given in table 8.1. Its
molar mass is 28.9644. The quantities ¥; and ¥; in table 8.1
are the mole and mass fractions, respectively, of species i in
the oxidant, and f; is the ratio of the mole fraction of oxidant
species i to that of oxygen

= — (8.47)

For the standard air given in table 8.1 it is the {;} values that
are built into the code.

To obtain the relations between species mole fractions and
© or f/a, we use the stoichiometric fuel-oxygen reaction

4ﬂc +ny

-2
CpHy, O + 0 0, — ncCO, + "TH H,0

(8.48)

which is valid for any fuel with (4nc + ny) > 2np. The fuel-
oxidant equivalence ratio is defined as

F/O
= 8.4
= Fon. (8.49)

where F/O is the actual fuel-oxygen molar ratio and (F/O); is
its stoichiometric value. It is clear from reaction (8.48) and

TABLE 8.1 —STANDARD OXIDANT
COMPOSITION BUILT INTO LSENS
[Molar mass, 28.9644.]

Species, Mole Mass Mole
S; fraction, | fraction, | fraction ratio,
X 7i ti (= X/ X0,)
N, 0.78088 | 0.75524 3.727350
0, 0.20950 | 0.23145 | -
Ar 0.00932 | 0.01285 0.044487
CO; 0.00030 | 0.00046 0.001432

8.9 Net Reaction and Species Formation Rates
the definition of ¢ that

X
. R (8.50)
xo2 4nC +ny - 2n0

where the subscript f denotes fuel.
Now the mole fraction of each oxidant species i in the fuel-
oxidant mixture is related to X0, via

x; =k ,\co2 (8.51)
which together with equation (8.50) and the identity
xf+x02+xN2+xAr+xCO2=l (8.52)
gives the following expression for X0,
4dne +ny —2ng (8.53)

x =
0, 49+ (4ne +ny ——2n0)(1+'tN2+"Ar+"C02)

The fuel and oxidant species mole fractions can then be com-
puted by using equations (8.50) and (8.51). Finally equation
(8.45) gives the {0;}.

If the fuel-oxidant mass ratio is specified, we first compute
xf/x02 by using the relation

x M . fla
25 Muaiclla (8.54)
X0, M, %o,
where the subscript “air” denotes oxidant and
X L (8.55)

Yo, =
2 1+le\12+/¢[,“+le)2

Equation (8.50) then gives @, from which the initial mixture
composition can be computed by using the procedure
described above.

8.9 Net Reaction and Species
Formation Rates

The relative importance of the jth reaction to the formation
or destruction rate of the ith species can be gauged by exam-
ining its net reaction rate per unit volume r; and the time rate

8. Capabilities of Code

of change of 6; due to the jth reaction, (doj/dr);. However,
these rates are converted to more useful quantities as follows:
For each reaction j the code computes the net reaction con-
version rate X; which is defined as

r:
Xj= —’2 (8.56)
p
where 7; is given by
r = Rj - R_j (8.57)

Here R; and R_; are, respectively, the molar forward and
reverse rates per unit volume of reaction j. The larger magni-
tudes of the {X;} make it easier to use them than the {rj} to
compare net reaction rates. The net molar rate of formation
of species i per unit volume by reaction j, ®;;, which is
defined by

do.
— _l = ” . 7
®; —p[dr] (vs vil, (8.58)
J

is also generated. The {w;;} are useful in developing a
chemical kinetic mechanism because they show which reac-
tions are important in forming or destroying a species.

8.10 Equilibration Factor

It is often important to know how far a chemical reaction
is from its equilibrium condition. To determine the state of
the jth reaction, we derive a simple equilibration factor from

rj, equation (8.57). Now r; will be positive or negative de-
pending on the magnitudes of R; and R—;. If R; is greater
than R_;, we divide equation (8.57) by R; to get

R_.
=1-—L (8.59)
R,

\.w |“‘3

If the reaction is far from equilibrium, R; will be significantly
larger than R _; and the ratio r/R; will be a positive number
very close to unity. If the reaction is near equilibrium,
R; = R_; and ry/R; will be a positive number close to zero.
Therefore r/R; varies between O and 1 for the extreme situa-
tions of equilibrium (R; = R—;) and irreversibility (R -; = 0).

If, however, R_j is greater than R;, we divide equation
(8.57) by R to get

S N
- (8.60)

and the ratio r/R_; varies between 0 and —1 for the extreme
conditions of equilibrium (R; = R_)) and irreversibility
(Rj=0).

The two ratios, equations (8.59) and (8.60), can be com-
bined into a single equilibration factor E ;

r.
E, = W (8.61)

where the vertical bars denote absolute value and 0 < E; < 1.
The equilibration factor is useful in determining the effect of
a single reaction on the entire complex process and is com-

puted for each reaction.

Chapter 9

Code Organization and Description

9.1 Introduction

The present version of the LSENS code, dated July 22,
1992, is in double precision. It is compatible with most
FORTRAN 77 compilers. However, it contains detailed
instructions on how to convert it to FORTRAN 66. The
MAIN program lists all routines requiring modifications.
Also, in each such routine both the changes and the lines
where they must be made are given.

The code was developed on the NASA Lewis Research
Center’s IBM 370/3033 computer using the TSS operating
system (OS) and the Amdahl 5870 computer using the UTS
OS. It has also been successfully executed on the following
computer systems: NASA Lewis Research Center’s Amdahl
5870 using the VM/CMS OS, Cray-X/MP/2/4 using the COS
and UNICOS operating systems and the CFT and CFT77
compilers, Cray-Y/MP/8/6128 using UNICOS 6.0 and
CFT77, Alliant FX/S, Convex C220 minicomputer using the
Convex 8.0 OS, and VAX 11/750, 11/780, 11/785, 6320,
6520, 8650, 8800, and 9410 using the VAX/VMS OS and
VAX FORTRAN compiler; NASA Ames Research Center’s
Cray-2 and Cray-Y/MP using UNICOS and CFT77; the Sun
SPARCstation 1 using the Sun 4.1 OS; several IRIS worksta-
tions using the IRIX 4.0.1 OS and F77 compiler; and the
IBM RISC System/6000 using the AIX 3.1 OS and the XLF
and F77 compilers.

The code consists of a MAIN program, 59 subprograms,
and a BLOCK DATA module. Table 9.1 lists these subpro-
grams in the order that they appear in the code and briefly
describes them. The subprograms SECCPU, DDOT,
DIMACH, IDAMAX, and VNORM are function routines;
all others are subroutines. Also the routine CUBS contains
statement functions. The function SECCPU, which computes
the incremental central processing unit (CPU) time in sec-
onds, calls the system clock to obtain the total CPU time used
since initiation of the job. The code uses the following intrin-
sic and external routines: ALOG, DABS, DBLE, DEXP,
DFLOAT, DLOG, DMAXI1, DMIN1, DSIGN, DSQRT, EXP,
FLOAT, IABS, IFIX, MAX0, MINO, MOD, READ, SNGL,

and WRITE. Finally, subroutines INIT, KINP, TINP, and
SENSIN use namelists.

The different subprograms that make up the LSENS pack-
age are arranged in three blocks or groups as follows: The
first group contains the MAIN program and those (CIMAGE
to WSR) related to thermodynamic, transport, and kinetics
computations. The second group includes the subroutines
(SENDDM to SNSTAB) required for sensitivity analysis.
The last group contains the subprograms (LSODE to
XSETUN) included in the code LSODE (refs. 20 to 22),
which is used to solve the governing ordinary differential
equations (ODE’s). Within each group the subprograms are
arranged alphabetically. The BLOCK DATA module is lo-
cated at the end of the code.

LSENS has been arranged as much as possible in a “modu-
lar” fashion, with different subprograms performing different
tasks. However, to avoid unnecessary work, some computa-
tions are performed in subprograms other than where they
naturally belong. An example is the calculation of the ther-
modynamic properties d¢y, /dT (i = 1,..,NS), where ¢,; is the
constant-pressure, molar-specific heat of species i, T is the
temperature, and NS is the total number of (reacting and in-
ert) species. These derivatives are needed only for the com-
putation of certain elements of the Jacobian matrix (see eq.
(9.2)), which is required for the numerical integration of the
ODE’s and for sensitivity analysis. Hence they are com-
puted in subroutine PEDERY, which computes the Jacobian
matrix, and not in subroutine THRM, which computes all
other thermodynamic properties of the species (table 9.1).

Because the code is designed to be modular, the number of
subprograms is fairly large. However, this feature aids in
both understanding and, if necessary, modifying the code. In
addition, as improvements are made in any calculation proce-
dures or methods built into the code, only the subprograms
using these procedures need to be replaced. An example is
the computation of thermodynamic data. The relations built
into the code are based on fitting data over two temperature
ranges. Work is now under way to extend the temperature
range over which the calculations are valid; it requires the

TABLE 9.1.—DESCRIPTION OF SUBPROGRAMS USED IN LSENS

Subprogram Description

MAIN Manages solution of problem by calling chemical kinetics preprocessor, integrator or perfectly stirred reactor

solver, and output subprograms. Also computes CPU times and prints them.

CIMAGE Reads in and prints image of input data for each case.

COMB Manages calls for equilibrium calculations. Also computes CPU time for this calculation and prints it.

CUBS Computes assigned variable or temperature and its first derivative by using either user-supplied polynomial equation or
cubic spline fit of user-provided table of values.

DIFFUN Computes derivatives of dependent variables with respect to independent variable.

ELEMNT Computes element composition in atoms per gram of mixture.

EQLBRM Performs equilibrium computations for assigned pressure and enthalpy, assigned pressure and temperature, assigned density
and internal energy, and assigned density and temperature.

GAUSS Solves a set of linear equations by using Gaussian elimination.

HETRAN Computes heat loss terms and, if necessary, reads in viscosity and thermal conductivity data.

INIT Reads in initial (or reactor inlet) mixture composition and values of thermodynamic and flow variables.

KINP Processes and checks legality of all input data including reaction mechanism but not temperature profile for assigned-
temperature problem or sensitivity analysis data. At user’s option, tests reaction mechanism uniqueness and atom/charge
balance of each reaction.

MATRIX Sets up matrices used in equilibrium computations.

OUT1 Prints all input information including reactions and rate coefficient parameters.

ouT2 Prints general output for kinetics and sensitivity problems and equilibrium solution for perfectly stirred reactor problem.

PEDERV Computes elements of Jacobian matrix.

RKTOUT Computes and prints rocket performance parameters.

RXNTAB Tabulates and prints reaction numbers in order of decreasing importance for each species (i.e., decreasing rates of production
of each species by reactions) and prints all nonzero rates of production by each reaction for every species.

SECCPU Computes CPU time increment in seconds.

SHOCKS Solves incident shock equations for equilibrium and frozen cases.

SHOK Manages setup and subprogram calls for incident shock calculations. Also, computes and prints CPU times for equilibrium and
frozen shock calculations.

SPLINE Performs cubic spline fit by using first-derivative method with parabolic runout for end conditions.

SPOUT Prints results of shock and equilibrium problems. Also transfers frozen shock results to input of shock-kinetics problem and,
if necessary, computes characteristic shock tube reaction length.

THRM Computes nondimensional thermodynamic properties of species.

TINP Processes and checks legality of temperature-related data for assigned-temperature problem.

WSOUT Prints perfectly stirred reactor solution.

WSR Performs perfectly stirred reactor computation.

SENDDM Main integration and sensitivity solution driver. Manages call to core integrator and sensitivity subprograms that set up work
array pointers and initialize sensitivity arrays.

DFDP Computes partial derivatives of temporal derivatives of dependent variables with respect to sensitivity parameters.

DMACHK Sets up real and integer work array pointers for core integrator and sensitivities, and checks that storage requirements are met.

DMINIT Initializes sensitivity arrays.

DMINTR Interpolates for sensitivity coefficients and their derivatives at output times.

DMPJAC Computes iteration matrix and manages subprogram call for its LU-decomposition.

DMPRNT Prints storage and computational work requirements for sensitivity analysis.

DMSTOD Advances sensitivity solution by one time step.

SENSIN Processes and checks legality of input data for sensitivity computations.

SNSOUT Computes and normalizes sensitivity coefficients when pressure sensitivities are not required. Prints normalized sensitivity
coefficients.

SNSPSC Computes and normalizes sensitivity coefficients when pressure sensitivities are required.

SNSTAB Tabulates and prints reaction numbers in order of decreasing importance (i.e., normalized sensitivity) and nonzero normalized
sensitivity coefficients for each dependent variable.

LSODE Main core integration routine. Checks legality of input, sets work array pointers, initializes work arrays, computes initial
integration step size, manages solutions of ODE's for both kinetics problems and sensitivity coefficients, and returns to calling
routine with solutions and errors.

CFODE Sets method coefficients for solution and test constants for local error test and step size and method order selection.

DAXPY Forms the sum of one vector and another times a constant.

DDOT Computes dot product of two vectors.

DGBFA Performs LU-decomposition of a banded matrix by Gaussian elimination.

DGBSL Solves a linear system of equations using a previously LU-decomposed banded matrix.

10

9.1 Introduction

TABLE 9.1.—Concluded.

Subprogram Description
DGEFA Performs LU-decomposition of a full matrix by Gaussian elimination.
DGESL Solves a linear system of equations using a previously LU-decomposed full matrix.
DSCAL Scales a vector by a constant.
DIMACH Computes unit roundoff of computer.
EWSET Sets error weight vector.
IDAMAX Identifies vector component of maximum absolute value.
INTDY Computes interpolated values of specified derivative of dependent variables.
PREPJ Computes iteration matrix and either manages subprogram call for its LU-decomposition or computes its inverse.
RSCOM Restores contents of common blocks LS0001 and EHOO001.
SOLSY Manages solution of linear system arising from chord iteration.
STODE Advances solution of ODE’s for model problem by one integration step. Also, computes step size and method order to be
attempted on next step.
SVCOM Stores contents of common blocks LS0001 and EHO001.
VNORM Computes weighted root-mean-square norm of a vector.
XERRWV Handles error messages from LSODE package and sensitivity routines DMACHK, DMINTR, and DMSTOD.
XSETF Resets print control flag for error messages from XERRWV.
XSETUN Resets logical unit number for error messages from XERRWYV.

use of several temperature ranges (ref. 12). In order to incor-
porate the new calculation procedure into LSENS, only
THRM has to be replaced and suitable modifications made to
PEDERY and appropriate common blocks.

Communication between different subprograms is accom-
plished by means of both call sequences and common blocks,
which are used extensively in LSENS. The reason for using
common blocks is to avoid lengthy call sequences, which can
significantly deteriorate the efficiency of the program. The
common blocks, if any, used by each subprogram are given
in table 9.2. This table also lists all subprograms called and
referenced (e.g., an external function) by each subprogram.
Also, in order to facilitate the use of LSENS in overlay situ-
ations, all subprograms that call and reference each subpro-
gram are listed. Finally for each subprogram the table gives
entry names in parentheses and dummy procedure names
(which are passed in call sequences and have to be declared
external in each calling and called subprogram) in brackets.
Although we have listed only those common blocks that are
actually used by the MAIN program, it contains every com-
mon block used in the code so that it can be used in overlay
situations.

All the common blocks used in the code are listed in
alphabetical order in table 9.3. Also given in this table are
the variables contained in each common block and their di-
mensions, if different from unity. To further assist in user un-
derstanding and modification of the code, we have included
in table 9.3 the names of all subprograms that use each com-
mon block. It must be pointed out that not all variables listed
for a given common block are needed by each routine that
contains it. For this reason some subprograms may use
dummy names, which are not listed in table 9.3, and vari-

ables with the same names may be declared to be of different
lengths in different routines.

Each subprogram contains type declarations for all vari-
ables used in it. Such declarations are useful for debugging
and provide a list of all variables that occur in a routine. This
list is useful in overlay situations (ref. 23). The type declara-
tions are arranged in a specific order to enhance their utility.
At the beginning of each routine the variables are listed in
blocks of statements, with each block corresponding to a par-
ticular data type. The variable types are listed in the follow-
ing order: character, logical, integer, real, and double preci-
sion. Within each block of data type the variables are usually
listed in the following order: variables passed in the call se-
quence, local array variables, variables appearing in common
blocks, and finally local scalar variables. In some of the sen-
sitivity and integration subprograms and in the BLOCK
DATA module this order is not followed strictly. Instead, we
have placed together blocks that belong to the same program
group; however, character variables, if any, are always listed
first. For variables that appear in each common block we
have, in general, used a separate data-type statement. For a
given data type these declarations are listed in the same order
as the common blocks. Also, in virtually all data-type decla-
ration statements the variables are listed in alphabetical order.

The variable-type declaration statements are followed by
DIMENSION statements. We first list variables included in
the call sequence, then variables that appear in namelists, and
finally local array variables. Following the DIMENSION
statements, if any, all common blocks are listed in alphabeti-
cal order. Again in some subroutines this order is not strictly
followed, and common blocks that belong to the same pro-
gram group are placed together. However, within each such

TABLE 9.2.—ROUTINES WITH COMMON BLOCKS, SUBPROGRAMS, AND CALLING SUBPROGRAMS

Subprogram Common blocks used Subprograms called and referenced Calling subprograms
[Dummy proce-
dure name]
(Entry names)
MAIN COND DIRECT GEAR9 DIFFUN KINP OUT1
150001 LS0002 LTUS OUT2 PEDERV RXNTAB
MISC NECC ODECON SECCPU WSR SENDDM
OPTS2 PRIN PROP DFDP DMPRNT SNSOUT
SAVRAT SENNOR SENPAR INTDY
SENVAR SINT
CIMAGE LTUS KINP
COMB COND INDX LTUS ELEMNT EQLBRM SECCPU KINP
MISC NECC OPTS2 SPOUT
POINTS SPECES
CUBS AFUN COND LTUS SPLINE DIFFUN KINP
(CINP) TINP
DIFFUN {F] COND CUBASV CUBTMP CUBS HETRAN THRM MAIN WSR
(DIFFW, DIFF1) GHSC LTUS NECC DMSTOD LSODE
ODECON OPTSi OPTS2 PREPJ STODE
PROP RATLOG REAC2
RRAT SABS SINT
SPCONC SPEC2 STCS
TRAN TRAN2 ZERCON
ELEMNT COND INDX MISC COMB SHOK
SPECES WSR
EQLBRM COND GHSC INDX GAUS MATRIX THRM COMB SHOCKS
LTUS MATX MISC WSR
NECC OPTS2 POINTS
SPECES
GAUSS COND INDX MATX EQLBRM WSR
HETRAN COND GHSC LTUS DIFFUN KINP
(HTWSR, NECC OPTSI1 PDDTRM
VISCON) SPEC1 SPEC2 TRAN
TRAN2
INIT COND FAIR1 FAIR2 KINP
LTUS NECC ODECON
OPTS1 OPTS2 SAVRAT
SINT SPEC1 SPEC2
KINP AFUN COND CUBASV CIMAGE COMB CUBS MAIN
(WSFLIP, RINP) CUBTMP ELMNTS FAIR1 HETRAN INIT SHOK
GHSC INDX INERT1 THRM TINP SENSIN
INERT2 KOUT1 KOUT2
LS0002 LTUS MISC
NECC ODECON OPTS1
OPTS2 PDDTRM PRIN
PRIN2 PROP RATLOG
REACI REAC2 RMTHOK
ROKET RRAT SABS
SAVVAR SENVAR SINT
SPECES SPEC1 SPEC2
STCS TCOF TRAN
TSTNOS XVSAl XVSA2
XVST2

TABLE 9.2.—Continued.

Subprogram Common blocks used Subprograms called and referenced Calling subprograms
[Dummy proce-
dure name]
(Entry names)
MATRIX COND GHSC INDX EQLBRM
MATX MISC NECC
OPTS2 POINTS SPECES
OUT1 AFUN COND CUBASV MAIN
CUBTMP FAIR2 GHSC
INERT2 KOUT1 KOUT2
LS0002 LTUS NECC
ODECON OPTSI1 OPTS2
PRIN PROP REACI
REAC2 ROKET RRAT
SAVVAR SENNAM SENNOR
SENPAR SENVAR SINT
SPEC1 STCS TRAN
XVSAl XVSA2 XVST1
XVST2
OUT2 AFUN COND GEAR9 RKTOUT MAIN WSR
(OUTSTR, GHSC INERT2 KOUT1
OUT3) KOuUT2 LTUS NECC
ODECON OPTS! OPTS2
PROP REAC2 ROKET
SABS SAVRAT SINT
SPCONC SPEC1 SPEC2
TRAN
PEDERV COND GHSC LTUS WSR DMPJAC
[JAC] MATX NECC ODECON PREPJ
(PDWSR) OPTS1 OPTS2 PDDTRM
PROP REAC2 RRAT
SABS SPCONC STCS
TCOF TCOF2 TRAN
TRAN2 ZERCON
RKTOUT COND LTUS ROKET ouT2
RXNTAB COND LTUS ODECON MAIN
OPTS1 REAC2 SENPAR
SPEC1 SPEC2
SECCPU System CPU MAIN COMB
clock SHOK WSR
SHOCKS COND GHSC INDX EQLBRM THRM SHOK
LTUS MISC NECC
POINTS SPECES
SHOK COND LTUS MISC ELEMNT SECCPU SHOCKS KINP
NECC POINTS SPECES SPOUT
SPLINE CUBS
SPOUT AFUN COND CUBASV THRM COMB SHOK
(ECOUT, GHSC INDX KOUT1
ESOUT, LTUS MISC NECC
FSOUT) OPTS2 POINTS SPECES

SPEC1

13

TABLE 9.2.—Continued.

Subprogram Common blocks used Subprograms called and referenced Calling subprograms
[Dummy proce-
dure name)
(Entry names)
THRM COND GHSC LTUS DIFFUN EQLBRM
TCOF TCOF2 KINP SHOCKS
SPOUT WSR
TINP COND CUBTMP KOUT1 CUBS KINP
(TMPPAR) LTUS OPTS1 OPTS2
PRIN PRIN2 SABS

SAVIMP SAVVAR TSTNOS
XVST1 XVST2

WSOouUT COND KOUT1 LTUS WSR
MISC NECC PROP
SPEC1 SPEC2 TRAN
WSR COND GHSC INDX DIFFUN ELEMNT EQLBRM | MAIN
KOUT2 LTUS MATX GAUSS OUT2 PEDERV
MISC NECC ODECON SECCPU THRM WSOUT
PROP REAC2 SPECES
SPEC1 SPEC2 TRAN
SENDDM COND DFDPA DIRCT2 DIFFUN PEDERV DFDP MAIN
DIRECT PRIN SENPAR DMACHK DMINIT LSODE
SENSOL
DFDP COND DFDPA GHSC DMSTOD
NECC ODECON OPTS2
RRAT SABS SENPAR
SENVAR SPEC2
DMACHK DIRECT SENPAR XERRWV SENDDM
DMINIT DIRECT LS0001 PRIN SENDDM
SENPAR
DMINTR DIRECT LS0001 SENPAR XERRWYV SNSOUT SNSPSC
SENSOL SENVAR LSODE
DMPIJAC DGEFA PEDERYV DMSTOD
DMPRNT DIRECT EHO0001 MAIN
DMSTOD DFDPA DIRCT2 DIRECT DIFFUN PEDERV DFDP LSODE
LS0001 PRIN SAVRAT DMPJAC SOLSY XERRWV
SENPAR
SENSIN COND LTUS ODECON KINP
OPTS2 REAC2 SENNAM
SENPAR SENVAR SPEC1
SNSOUT DIRECT GHSC L.S0001 DMINTR SNSPSC SNSTAB MAIN
(SNSOT2) LTUS NECC OPTS2
PRIN RRAT SENNAM

SENNOR SENPAR SENSOL
SENVAR SINT TSTNOS

TABLE 9.2.—Continued.

Subprogram Common blocks used Subprograms called and referenced Calling subprograms
[Dummy proce-
dure name]
(Entry names)
SNSPSC DIRECT GHSC LS0001 DMINTR SNSOUT
NECC ODECON PRIN
RRAT SAVRAT SENNOR
SENPAR SENSOL SENVAR
SINT TSTNOS
SNSTAB LTUS SENNAM SENPAR SNSOUT
SENSOL SENVAR
LSODE COND DIRECT LS0001 DIFFUN PEDERV DFDP SENDDM
SINT DMINTR DMSTOD DIMACH
EWSET INTDY PREPJ
SOLSY STODE VNORM
XERRWV
CFODE STODE
DAXPY DGBFA DGBSL
DGEFA DGESL
DDOT DGBSL DGESL
DGBFA DAXPY DSCAL IDAMAX PREP}
DGBSL DAXPY DDOT SOLSY
DGEFA DAXPY DSCAL IDAMAX DMPJAC PREP]
DGESL DAXPY DDOT SOLSY
DSCAL DGBFA DGEFA
DIMACH LSODE
EWSET LSODE
IDAMAX DGBFA DGEFA
INTDY COND GEARS LS0001 XERRWV MAIN LSODE
LTUS ODECON OPTS1
VELDOT
PREPJ [PJAC] COND L.S0001 DIFFUN PEDERV DGBFA STODE
DGEFA VNORM
RSCOM EHO0001 LS0001
SOLSY ([SLVS] LS0001 DGBSL DGESL DMSTOD STODE
STODE COND DIRECT GEAR9 DIFFUN PEDERV CFODE LSODE
LS0001 ODECON OPTS1 PREPJ SOLSY VNORM
VELDOT
SVCOM EHO0001 180001

TABLE 9.2.—Concluded.

Subprogram Common blocks used Subprograms called and referenced Calling subprograms
[Dummy proce-
dure name]
(Entry names)
VNORM LSODE PREPJ
STODE
XERRWV EH0001 DMACHK DMINTR
DMSTOD LSODE
INTDY
XSETF EHO0001
XSETUN EHO0001
BLOCK DATA DIRECT EHO0001 KOUT1
LS0001 LTUS NECC
OPTS1 REAC1 SPEC1
TCOF2 TSTNOS
TABLE 9.3.—COMMON BLOCKS WITH VARIABLES AND SUBPROGRAMS
Common block Variables (dimension) Subprograms where used
AFUN LSUBM ETA D VISC BETA SHOCK CUBS KINP OUT! OUT2 SPOUT
COND SIGMA(50) T RHO V DVAR AREA MDOT P IVAR LS | MAIN COMB CUBS DIFFUN ELEMNT
LSP1 LSP2 LSP3 NEXT FLPROB EQLBRM GAUSS HETRAN INIT KINP
MATRIX OUT1 OUT2 PEDERV RKTOUT
RXNTAB SHOCKS SHOK SPOUT THRM TINP
WSOUT WSR SENDDM DFDP SENSIN LSODE
INTDY PREPJ STODE
CUBASV CUBX(100) CUBY(100) CUBM(100) CN(4) NTB ITPSZ DIFFUN KINP OUT1 SPOUT
IPRCOD
CUBTMP CUBXT(100) CUBYT(100) CUBMT(100) CNTMP(4) NTTB DIFFUN KINP OUT1 TINP
ITTSZ ITRCOD
DFDPA DFDPJ(52,750) SENDDM DFDP DMSTOD
DIRCT2 NFIRST LSCALL SENDDM DMSTOD
DIRECT DMHO DMELU(13) JDMOPT JDMJAC JSTRDM JDMIEV MAIN SENDDM DMACHK DMINIT DMINTR
JDMADD JDMDEV IDIRC2 NDMSEN IDMNOR IDMIJAC DMPRNT DMSTOD SNSOUT SNSPSC LSODE
IDMY2 IDMIA NRSTOT NISTOT NSTDM NFEDM STODE BLOCK DATA
NJEDM
EHO0001 MESFLG LUNIT DMPRNT RSCOM SVCOM XERRWV XSETF
XSETUN BLOCK DATA
ELMNTS ELNAM(15) KINP
FAIR1 FUEL INIT KINP
FAIR2 SCC SCH SCOX ERATIO NOXRAT FLAIR ARAT CRAT | INIT OUTI
AIRMW FRO2
GEAR9 HUSED NQUSED NSTEP NFE NJE VN PDVAR TDVAR | MAIN OUT2 INTDY STODE

16

TABLE 9.3.—Continued.

Common block

Variables (dimension)

Subprograms where used

GHSC

INDX

INERT1

INERT2

KOUT1

KOUT2
LS0001

LS0002

LTUS

MATX

MISC

NECC

ODECON

OPTSI1

OPTS2

PDDTRM

POINTS

DLTX TXR GRT(50) HRT(50) SR(50) CPR(50) DCPR(50)

NLM I1Q1 Q2 IQ3 KMAT IMAT COMBUS HP TP
CONVG

DISNM(50)
NINERT

UNIT TITLE(20) UNITI UNITO FPS SI CGS

CONC EXCHR DELH(250) DBUGO

ROWND CONIT CRATE EL(13) ELCO(13,12) HOLD RC
RMAX TESCO(3,12) ELO H HMIN HMXI HU TN
UROUND ILLIN INIT LYH LEWT LACOR LSAVF
LWM LIWM MXSTEP MXHNIL NHNIL NTREP
NSLAST NYH JALTH IPUP LMAX MEO NQNYH
NSTEPJ IER JSTART KFLAG L METH MITER
MAXORD N NQ NST NFE NIJE NQU

HINIT HMAX HMIN MAXORD
MXSTEP MXHNIL

LTHM LREAD LWRITE LDAT LTRAP LSCR NTHRD

NBLANK NPHOTO

GA(51,52) GX(51)

TT HRO ENN SUMN ENNL PP CPRO ELNO(1S5) NITER

SSUM MIXMW RATM M2 GAMMA TCPR RERG RCAL

NRS NRSP1 NRSP2 NSODE NSODP! NTEQ NRHEQ

NVEQ NODES SKIPTR TREQD RHREQD NOJTRH
VREQD

VERSI TIMEV VERSA AREAV

RHOCON TASS RXORDR ACONST PCONST TGIVEN
TCONST

PDDSIG(50) PDDT PDDRHO PDDV

PMLOG DLVTP DLVPT HSUM CCPR GAMMAF WM

DIFFUN EQLBRM HETRAN KINP MATRIX OUTI

OUT2 PEDERV SHOCKS SPOUT THRM WSR
DFDP SNSOUT SNSPSC
COMB ELEMNT EQLBRM GAUSS KINP

MATRIX SHOCKS SPOUT WSR
KINP
KINP OUT1 OUT2

KINP OUT!
BLOCK DATA

OUT2 SPOUT TINP WSOUT

KINP OUTI OUT2 WSR

MAIN DMINIT DMINTR DMSTOD SNSOUT
SNSPSC LSODE INTDY PREPJ] RSCOM SOLSY
STODE SVCOM BLOCK DATA

MAIN KINP OUTI

MAIN CIMAGE COMB CUBS DIFFUN
EQLBRM HETRAN INIT KINP OUT! OUT2
PEDERV RKTOUT RXNTAB SHOCKS SHOK
SPOUT THRM TINP WSOUT WSR SENSIN
SNSOUT SNSTAB INTDY BLOCK DATA

EQLBRM GAUSS MATRIX
PEDERV WSR

MAIN COMB ELEMNT EQLBRM KINP
MATRIX SHOCKS SHOK SPOUT WSOUT WSR

MAIN COMB DIFFUN EQLBRM HETRAN INIT
KINP MATRIX OUT1 OUT2 PEDERV SHOCKS
SHOK SPOUT WSOUT WSR DFDP SNSOUT
SNSPSC BLOCK DATA

MAIN DIFFUN INIT KINP
OUT1 OUT2 PEDERV RXNTAB WSR DFDP
SENSIN SNSPSC INTDY STODE

DIFFUN HETRAN INIT KINP OUTI OUT2
PEDERV RXNTAB TINP INTDY STODE
BLOCK DATA

MAIN COMB DIFFUN EQLBRM INIT KINP
MATRIX OUT1 OUT2 PEDERV SPOUT TINP
DFDP SENSIN SNSOUT

HETRAN KINP PEDERV

COMB EQLBRM MATRIX SHOCKS SHOK
SPOUT

17

TABLE 9.3.—Continued.

Common block

Variables (dimension)

Subprograms where used

PRIN

PRIN2

PROP

RATLOG

REACI
REAC2

RMTHOK

ROKET

RRAT

SABS

SAVRAT

SAVTMP

SAVVAR

SENNAM

SENNOR

SENPAR

SENSOL

SENVAR

SINT

SPCONC

SPECES

SPEC1

SPEC2

CPRINT(100) NPRNTS CEND PSTAT PASSV PTEMP
IPRINT

APRINT(100) PRINT(100) END

EIN EOUT VOLUME SI SF RHOI GAMI WM DELMD
DELT MASS MPR DOTMAX TMPMIN DTMAX RITE

WSFLOW WELSTR WSRHTR
DAFLOG(250)

EQUAL

LSR(4,250) XX(250) DPX(2,250) MM(35) RATE(250)
BRATE(250) LR LRTYPE(250) LR3RD(35) NS3RD(35)
I3RD(10,35)

RMFINE THFINE

PC ATHROT ROCKET

A(250) N(250) EACT(250) M(10,35) NUM(250) NTBR
ALIMI1

S1 AA BB S2 DTERM TTERM DA DT MWARN
FF(53)

XTB(100) TTB(100) TMPTB(100) CX(4) CT(4)
TPRINT(100)

CXTB(100) CATB(100) CXTTB(100) CTMPTB(100)

IPRSAV(4) ITRSAV(2) HT(S) WSRHT(5) ACON PCON

TCON

SNAMES(2,53)

SIVNP(52) SRPNP(3) YINV(52)

SCIV(53,52) SCRP(53,250,3) NPARR(3) IDPAR(2,52)
NREAC(250) NRPOUT

DYDYO0(52,52) SENSE(53,250,3)

TINY SENCAL SENSIV SENSRP SENSAJ SENSNJ
SENSEJ SENSTD SENP SENOUT SNORDR

TKSAVE EMAX ATOLSP MF MAXSTP NH AVH
MMHG MOLEF

C(50) CSUM

EN(50) ENLN(50) DELN(50) ELSP(15,50)

DSNAM(3) DSPNM(50) EFFM BLANK HNU TAPEND
TBSPNM(10,35)

MW(50) W(50) STOIC(50,250) OMEGA(50,250)

MAIN KINP OUTt TINP
DMSTOD SNSOUT SNSPSC

SENDDM DMINIT

KINP TINP

MAIN DIFFUN KINP OUTI
WSOUT WSR

OUT2 PEDERV

DIFFUN KINP

KINP OUTI BLOCK DATA

DIFFUN KINP OUT1 OUT2 PEDERV RXNTAB
WSR SENSIN
KINP

KINP OUTI OUT2 RKTOUT

DIFFUN KINP OUTI1
SNSPSC

PEDERV DFDP SNSOUT

DIFFUN KINP OUT2 PEDERV TINP DFDP
MAIN INIT OUT2 DMSTOD SNSPSC

TINP

KINP OUTI TINP

OUT1 SENSIN SNSOUT SNSTAB
MAIN OUTI SNSOUT SNSPSC

MAIN OUTI RXNTAB SENDDM DFDP
DMACHK DMINIT DMINTR DMSTOD SENSIN
SNSOUT SNSPSC SNSTAB

SENDDM DMINTR SNSOUT SNSPSC SNSTAB

MAIN KINP OUT1 DFDP DMINTR SENSIN
SNSOUT SNSPSC SNSTAB

MAIN DIFFUN INIT KINP
OUT1 OUT2 SNSOUT SNSPSC LSODE

DIFFUN OUT2 PEDERV

COMB ELEMNT EQLBRM KINP MATRIX
SHOCKS SHOK SPOUT WSR

HETRAN INIT KINP OUTI
SPOUT WSOUT WSR

OUT2 RXNTAB
SENSIN BLOCK DATA

DIFFUN HETRAN INIT KINP OUT2 RXNTAB
WSOUT WSR DFDP

18

9.2 Control

TABLE 9.3.—Concluded.

Common block Variables (dimension)

Subprograms where used

STCS NSTOIC(4,250) NSPRP(2,250) DIFFUN KINP OUTiI PEDERV

TCOF TC(50,7,2) TLOW TMID THI TPREV KINP PEDERV THRM

TCOF2 THCX(5) THDCX(3) THHCX(5) THSCX(5) KTHRM PEDERV THRM BLOCK DATA

TRAN DD HTRAN TWALL TOTMAS PQMRHO PQMT QDOTM DIFFUN HETRAN KINP OUTI OUT2 PEDERV

IH20 KOUNT

TRAN2 GAMM1 GMIDG DIFFUN HETRAN PEDERV

TSTNOS SMEST TESTNO NLMAX LSMAX LRMAX LSRMAX KINP TINP SNSOUT SNSPSC
TBRMAX TBSMAX NTBMAX NPMAX BLOCK DATA

VELDOT TOLD VDOT INTDY STODE

XVSAl XU AU@2) KINP OUT1

XVSA2 XTB(100) ATB(100) CX(4) KINP OUTI1

XVST1 XTU TU OUT1 TINP

XVST2 XTTB(100) TMPTB(100) CTMP(4) KINP OUT! TINP

ZERCON FBRATE(2,250) LZEROC DIFFUN PEDERV

OTTO STROKE RPM BORE QMREAD HTC(5)
WSHTC(5) NTR VTC(4,50,2) ICV(50) VCSP(50,2) FDSQ2

WSOUT WSR

set the common blocks are listed alphabetically. The com-
mon block list is followed by equivalence statements, if any,
and then by any namelists. Within each namelist the vari-
ables are ordered alphabetically. However, the namelists
themselves are listed in the order in which they are read.
Following the namelists are DATA statements for local vari-
ables and finally any functions that are internal to the rou-
tine.

The remainder of this chapter describes the code. To
facilitate description of the many functions and options built
into it, we separate the code into seven major sections, where
each section performs a different task. These sections are as
follows: control, input/output, numerical integration proce-
dure, sensitivity analysis, chemical equilibrium computa-
tions, incident shock computations, and perfectly stirred re-
actor computations. In addition, thermodynamic properties,
heat transfer rates, and transport properties are computed in
separate sections, by using the procedures described in chap-
ter 8.

For each of the seven sections we first describe its func-
tion and then, because they have already been described in
table 9.1, only list the subprograms used. The discussion is
focused mainly on the special features and built-in options.
However, we provide detailed flowcharts to explain the com-
putational procedures; in addition, structural diagrams are

given for each section. We conclude this chapter with a brief
discussion of the error messages included in the code.

9.2 Control

The control section consists of the MAIN program and, as
discussed in later sections, to some extent the subroutines
COMB, SHOK, SENDDM, and LSODE. The MAIN pro-
gram provides for problem setup through a series of subrou-
tine calls. It calls for input and output of the reaction mecha-
nism and other problem options. It also calls the appropriate
subroutine, WSR or SENDDM, depending on the problem
type—perfectly stirred reactor (PSR) or kinetics/sensitivity
analysis. For the latter type of problem the MAIN program
also manages the calls for solution output and computes and
prints the CPU times.

The structure of the LSENS code is given in figure 9.1,
wherein a line connecting two routines indicates that the
lower routine is called by the upper one and the names in pa-
rentheses are ENTRY names. This notation is used in all the
structural diagrams presented in this chapter. The dashed
lines connecting the routine LSODE with XERRWYV and
DMINTR indicate that other routines not shown in this fig-
ure are also called by LSODE. We do not include the other

9. Code Organization and Description

MAIN program

DMPRNT
SECCPU
WSR
RXNTAB
System
clock
KINP
(WSFLIP,
RINP)
SNSOUT
SENDDM
(SNSOT2) |~ | ousraB
ouT™
ouT2 DMINIT
{OUT3)
SNSPSGC
DIFFUN LSODE
(DIFF1)
VN
DMACHK NN
cuBs N
{CINP) N
v] pmINTR
\\
\\
THRM
AN
AY
SPLINE \
HETRAN \
(HTWSR) RKTOUT XERRWV

Figure 9.1.—Structure of LSENS code.

routines here because we take up the structure of the LSODE
package in a later section (9.4). Figure 9.1 gives all the rou-
tines called by SENDDM because it provides some control of
the integration. The subroutines called by DIFFUN are also
included because of its importance.

A detailed flowchart of the MAIN program is given in fig-
ure 9.2. An important feature of LSENS is its capability to
perform multiple cases in a single run. This option is most

20

useful when several runs have to be made with the same
reaction mechanism but with different problem types or ini-
tial conditions. Another option that controls the integration
concerns the printout of results. The solution is generated
either at intervals of a prescribed number of integration steps
or at the output stations Eoyue,1,E0ut,2,.-.,» where § is the
integration variable (i.e., the independent variable for the
ODE’s).

Another
case?

T /[

rite summary of
computational
work for problem

Write error
message

End of

integration Call for printout
interval or last of all required
print station results

reached?

Integration
successful?

Call SENDDM
to integrate
ODE's and, if
required, compute
sensitivity
coefficients

9.3 Input/Qutput

Call KINP for
input to be
read and/or

processed and

verified

Set flag to
indicate that
PSR calculation
is not required

Flow
problem
using PSR
result?

Call for output
of reactions
and controls

Call for
computation of
initial rates and
derivatives

Write summary
of computational
work for problem

Call for printout
of all initial
conditions, rates,
and derivatives

PSR
calculation
successful?

Perfectly
stirred
reactor

case?

Call for perfectly
stirred reactor
computation

Figure 9.2.—Flowchart of MAIN program.

9.3 Input/Output

The input/output section is called for all problem types. It
reads, processes, and checks the legality of all initial
conditions and all input data, except those concerned with
sensitivity analysis. It also prints all input data and initial
conditions and prints and checks the validity of solutions
generated by the numerical integration method. In addition,

an option is available to tabulate and print reaction numbers
in the order of decreasing importance for each species and to
print all nonzero production rates of every species by each
reaction. The subprograms that make up this section are
CIMAGE, INIT, KINP, OUT1, QUT2, RKTOUT, RXNTAB,
TINP, and BLOCK DATA. The routines related to output for
sensitivity analysis, equilibrium, incident shock, and PSR
calculations are considered in later sections.

21

9. Code Organization and Description

The most important subroutine in this section is KINP,
whose structure and flowchart are given in figures 9.3 and
9.4, respectively. This subroutine initializes various param-
eters, sets standard options, and reads all options and input
data, except those specified for sensitivity analysis and the
temperature profile for an assigned-temperature problem.
The code has built-in standard choices for many of its op-
tions to minimize the amount of input data required. For the
same reason, for a repeat case most of the data specified for
the previous problem are saved.

For an assigned-temperature problem KINP calls TINP to
process the temperature profile and other optional inputs.
For example, LSENS includes an option whereby output can
be required at specified values of the temperature, if it is
assigned in tabular form as a monotonic function of the inte-
gration variable. In this situation TINP calls CUBS to com-
pute corresponding values of the integration variable.

Another option that is included in KINP is that the rate
coefficient for any third-body collisional reaction may be
adjusted to account for the different efficiencies of different
third-body species. The standard choice, which is automati-
cally set in KINP, is a collisional efficiency of unity. Thus
only collisional efficiencies that are different from unity need
to be specified. For each third-body reaction KINP builds up
a table of third-body species and their collisional efficiencies
that are different from unity. Any species for which an effi-
ciency value of unity is given is deleted from this table.

Calling
program,
MAIN
KINP
(WSFLIP,
RINP)
SHOK
CIMAGE coms
TINP
(TMPPAR)
INIT
SENSIN
cuBs
HETRAN THRM
(VISCON)
SPLINE

Figure 9.3.—Structure of subroutine KINP,

22

KINP automatically builds up lists of reacting species and
their constituent elements (atoms, etc.) as it processes each
reaction. Therefore the user need not specify separate lists of
elements and reacting species. A list of inert species is, how-
ever, required. Also in specifying third-body species names
there is no requirement that this species has already appeared
in a reaction. However, after all reactions and inert species
names have been processed, the routine verifies that every
third-body species has indeed appeared either as a reacting or
an inert species. In addition, the routine checks that the user
has not specified a noncatalytic reacting species as inert.

KINP also confirms that third-body efficiencies have been
specified only for a third-body reaction and that the effi-
ciency list follows the reaction. If the list is inserted before
the reaction, the routine will give an error message and stop
execution. However, if a third-body reaction precedes the
one for which the list is intended, such testing is impossible,
unless a third-body efficiency list had already been processed
for it.

KINP includes an option to check the legality of the reac-
tion mechanism. When this option is selected, the code veri-
fies that no reaction is duplicated and that each reaction satis-
fies charge and atom balance requirements. For example,
reaction duplication may arise because the same reaction is
written in different forms in different regions of the input file.
However, we feel that such testing, which adds to the
expense of running the code, is only necessary when the user
is either developing or preparing a new mechanism. For this
reason we have made it optional, and for a repeat case that
uses exactly the same mechanism as the previous case the
option is switched off by KINP (even if it had been selected
for the previous problem). However, in order to avoid an
error exit for apparently inexplicable reasons, for each repeat
case KINP checks that the formerly specified mechanism was
legal. If, for any reason it had been found to be illegal, a
message stating this fact is printed and the execution is
halted.

The same two actions (i.e., printing an error message and
terminating execution) are taken by KINP for a repeat case if
either illegal or insufficient thermodynamic data had been
supplied for the previous problem.

The final test of the reaction mechanism ensures that no
superfluous reaction has been included. Such a condition
arises when some reactions contain species that can neither
be formed nor destroyed by the mechanism and so will
always have forward and reverse (and hence net) rates of
zero. An example is the modeling of the H»-O, system with
an Hy-0;3-N; mechanism. This problem may also arise be-
cause some elements of reacting or inert species have not
been initialized (to a nonzero concentration). The error is not
considered fatal; a message describing the problem will be
printed, but the execution will not be terminated.

Following this testing of the reaction mechanism, KINP
identifies the problem type, checks the legality and suffi-
ciency of all input data, and converts them to internal (cgs)

Entry RINP

g

Any

thermodynamic
data in problem

data file?

Make scratch
thermodynamic data
tape from input data

reactions

to previous

case list?

Test validity
of reaction
mechanism?

If assigned-
temperature
problem, call
TINP to read
temperature
profile

Read keywords,
options, switches,
and controls; if

perfectly stirred
reactor problem,

If necessary
call HETRAN to
read viscosity
and thermal
conductivity

data

Reaction
mechanism

Process \

legal?

Call SHOK to
perform equilibrium
and frozen shock
calculations

third-body
reactions

C Return)

Call INIT
to read initial
conditions

l

read required

Identify problem
type and check
validity of input
data

data

Reset standard

Initialize and set
standard options

options and
initialize variables

T

Get thermodynamic
data from standard
file and/or scratch

Read (new)
reactions,

tape

Convert input
data to internal
(cgs) units

Read
integration

Incident
shock conditions
required?

Call COMB
to perform
equilibrium
calculation

Equilibrium
calculation
required?

Initial
conditions
legal?

rate parameters,

controls Call SENSIN

A anfj 'third.-body Read (new) to read and
Read reactions, new efficiencies; inert species check validity
rate coefficient param- add new Convert heat of sensitivity
eters, and third- species to tre_u:nsfer data, data
species list initial conditions

body efficiencies

and integration

£

controls to
Entry WSFLIP internal (cgs)
units

Figure 9.4.—Flowchart of subroutine KINP.

ensitivi
analysis
required?,

9. Code Organization and Description

units. A choice of three systems of units, cgs, U.S. custom-
ary, and SI, is provided for both input and output. The
choices for input and output units are independent of one
another, so that either the same or different units for input
and output can be selected. Output may be required at speci-
fied values of the assigned variable (pressure or area) if it is
given in tabular form as a monotonic function of the integra-
tion variable. In such a case KINP calls CUBS to compute
corresponding values of the integration variable.

An important function of KINP is that for a kinetics-only
problem (i.e., no sensitivity analysis) it sets the number N of
ODE’s that must be solved. The ODE set contains ODE’s
for only those variables that are required for a given problem
and vary during the course of the integration. Thus we do
not solve ODE’s for variables that are not required (e.g.,
velocity for a static problem), that are specified (e.g., tem-
perature for an assigned-temperature problem), and that are
constant (e.g., inert species mole numbers). The ODE set
therefore contains the minimum number of ODE’s required
to solve the problem. Not including the preceding variables
increases the efficiency of the ODE solution for two reasons:
(1) it avoids unnecessary calculations of derivatives and Ja-
cobian matrix elements and (2) the system is smaller, thereby
decreasing the cost of both lower-upper (LU)-decomposing
(e.g., ref. 6) the iteration matrix (see eq. (9.3)) and solving
for the corrections at each iteration.

If sensitivity analysis is required, KINP calls the routine
SENSIN, which processes all options and input data relevant
to sensitivity analysis and is described in section 9.5.

Finally KINP processes the initial conditions and, if nec-
essary, converts them to internal (cgs) units. It also checks
the legality and sufficiency of the initial conditions. More-
over, it checks that the problem is not overspecified. If a
chemical equilibrium computation is required, KINP calls
subroutine COMB, which manages such calculations. If
postshock conditions are required, KINP calls subroutine
SHOK, which manages these calculations.

9.4 Numerical Integration Procedure

LSENS uses the double-precision version (dated June 17,
1980) of the packaged code LSODE (refs. 20 to 22) to solve
the stiff ODE’s arising in combustion chemistry. LSODE
includes a variable-step, variable-order tmplicit Adams
method (suitable for nonstiff problems) of orders 1 to 12 and
a variable-step, variable-order backward differentiation for-
mula method (suitable for stiff problems) of orders 1 to 5.
The user may, however, specify a smaller value than used in
the code for the maximum order to be attempted on any step.

Irrespective of the solution method the code starts the in-
tegration with a first-order method and, as the integration
proceeds, automatically adjusts the method order (and step
size) for optimal efficiency while satisfying prescribed

24

accuracy requirements. Both integration methods employ a
predictor-corrector scheme, wherein on each step [£,—1,£,]
an initial guess X,[,O] for the solution vector Y, at &, is first
produced and then the guess is improved upon by iteration.
That is, improved estimates YI™ (m = 1,2,...) are computed
until the iteration converges. A standard explicit predictor
formula, a Taylor series expansion method devised by
Nordsieck (ref. 24), is used to generate X,[,O]. A range of
iteration techniques for correcting this estimate is included in
LSODE. Both the basic integration method and the corrector
iteration technique are selected by means of the method flag
MEFE. By definition, MF has the two decimal digits METH
and MITER, and

MF = 10xMETH + MITER ©.1)

In this equation the integers METH and MITER indicate,
respectively, the integration method and the corrector itera-
tion technique to be used for the problem. Table 9.4 summa-
rizes the integration methods included in LSODE and the
appropriate values for METH. The legal values for MITER
and their meanings are given in table 9.5. The Jacobian
matrix J referred to in this table is an NXN matrix, with ele-
ment J;; defined as

TABLE 9.4.—SUMMARY OF INTEGRATION METHODS
INCLUDED IN LSODE AND CORRESPONDING
VALUES OF METH

METH Integration method
1 Variable-step, variable-order implicit Adams method
of orders 1 to 12
2 Variable-step, variable-order implicit backward
differentiation formula method of orders 1 to 5

TABLE 9.5.—CORRECTOR ITERATION TECHNIQUES
AVAILABLE IN LSODE AND CORRESPONDING
VALUES OF MITER

MITER Corrector iteration technique
0 Functional iteration
1 Modified Newton iteration with user-supplied analytical
Jacobian matrix
2 Modified Newton iteration with internally generated
numerical Jacobian matrix
3 Modified Jacobi-Newton iteration with internally
generated numerical Jacobian matrix
aby Modified Newton iteration with user-supplied banded
Jacobian matrix
a5 Modified Newton iteration with internally generated
banded Jacobian matrix

“The user must supply the lower (ML) and upper (MU) half-bandwidths
of the Jacobian matrix (ref. 22).
DThis option should not be used with the present version of LSENS.

where y; is the ith ({ = 1,...,N) dependent variable and
fi = dyildt.

The LSODE package consists of the main core integration
routine, also called LSODE, and the 21 subprograms
CFODE, DAXPY, DDOT, DGBFA, DGBSL, DGEFA,
DGESL, DSCAL, DIMACH, EWSET, IDAMAX, INTDY,
PREPJ, RSCOM, SOLSY, STODE, SVCOM, VNORM,
XERRWY, XSETF, and XSETUN. Of these subprograms
LSENS makes no use of the routines RSCOM, SVCOM,
XSETF, and XSETUN. The structure of the LSODE pack-
age is given in figure 9.5, wherein the dashed lines indicate
the modifications made to this code to compute sensitivities
and the names in brackets are dummy procedure names.

The main routine LSODE controls the integration and
serves as an interface between the calling subprogram and
the rest of the package. Its flowchart is given in figure 9.6,
where ITASK and ISTATE are user-supplied indices that
specify, respectively, the task to be performed and the state
of the calculation, that is, if the call to LSODE is the first

Calling
subprogram,
SENDDM
LSODE
\ DIMACH
INTDY
EWSET .\ | DMINTR
\\ |
XERRWV
N
STODE DMSTOD
~] CFODE
PREPJ
[PJAC]
DIFFUN VNORM
I soLsY
SLVS
PEDERV [SLVS]
AC]
DGBFA, DGBSL,
DGEFA \ DGESL
IDAMAX DSCAL DAXPY DDOT

Figure 9.5.—Structure of LSODE package (adapted from reference 22).

9.4 Numerical Integration Preocedure

one for the problem or if it is a continuation (ref. 22). It must
be pointed out that the figure shows only those LSODE op-
tions used by LSENS. On return from LSODE the value of
ISTATE indicates if the integration was performed success-
fully, and if not, the reason for failure. The variable TOUT is
the next § value at which output is required. Finally JSTART
is an internally defined variable used for communicating the
state of the calculation with subroutine STODE.

An important feature of LSODE is that it will compute the
step size to be attempted on the first step if the user chooses
not to provide a value for it. Another useful feature is that
different integration methods can be used in different sub-
intervals of the problem. For example, the heat release pe-
riod, especially the early part, is not stiff (refs. 25 to 30), and
it may be more efficient to switch to a nonstiff method in this
regime (ref. 31). The code LSENS does not exploit this fea-
ture because of the lack of reliable regime identification tests,
and the same method is used for the whole problem.

The routine STODE advances the solution to the ODE’s by a
single integration step. In addition, it computes the method order
and the step size that together maximize efficiency while main-
taining prescribed accuracy. To increase the efficiency of the cal-
culation procedure, the solution history, which is required by the
multistep methods used in LSODE (ref. 22), is saved in the form
suggested by Nordsieck (ref. 24). The Nx(g, + 1) Nordsieck
history matrix z,_1 at &, contains the numerical solution
Y,.—1 and the g, scaled derivatives hS{)X({,)_l/j! G=1,..9,),
where h, (=&, — £E,—1) and g, are the current step size and
method order, respectively, and YW= djlldﬁj . The flow-
chart of STODE, again as used by LSENS, is presented in
figure 9.7, which essentially illustrates how the history ma-
trix is advanced over the step [£,—1,5,]. In this figure NCF
is the number of corrector convergence failures on the current
step, KFLAG is an internally defined flag used for communi-
cation with subroutine LSODE, z,[IO] is the predicted history
matrix at &, and P, an NxN iteration matrix that arises from
Newton iteration, is given by

P=I—- hBol 9.3)

where I is the NXN identity matrix and By is a method coef-
ficient that depends on the integration method and the
method order (ref. 22). The vector £ contains the integration
method coefficients, and 4 (= Pg) is the zeroth component of
£. The integer counter IALTH indicates how many more
steps are to be taken with the current step size H and method
order NQ, and HMIN and HMAX are user-supplied mini-
mum and maximum absolute values of the step size to be at-
tempted on any step. The ratios RHDN, RHSM, and RHUP
are factors by which H can be increased if the new method
order is NQ —1, NQ (the current value), and NQ + 1, respec-
tively. R is the ratio of the step size to be attempted next to its
current value, and RMAX is the maximum R allowed when a
step size change is next considered. Finally NQMAX is the

25

26

Check legality of

ISTATE and ITASK
values

Yes

Return to
calling program\ Yes
after one
step?

Process and check legality of all
mandatory and optional input

Set default values for
all optional parameters
not set by user

Set real work array pointers
and check adequacy of lengths
specified by user for real and
integer work arrays

(= 1: first call for problem)

Compute unit roundoff of computer;
set JSTART = 0 to indicate to STODE
that this is first call for problem;
initialize optional output parameters;
call DIFFUN for derivatives of initial
conditions and EWSET for error
weight vector

Form initial
history array

Sensitivity \ yeg
analysis
required?

Integration
successful?

Call STODE to
advance solution
by one step

Call DMSTOD
to advance
sensitivities
by one step

Compute index of
component with largest
magnitude in weighted L
local error; seté, Y, all
optional output, and
ISTATE < 0 to indicate
failure to calling program

'Write
error
message

Too
much
accuracy
required?

Yes

(ITASK = 2)

No
(ITASK = 1)

Excessive
number of steps
taken on this
call to

LSODE

?

Call INTDY to compute solution
Y at TOUT and set independent
variable £ = TOUT

If not specified by
user, compute step
size to be attempted
on first step

Sensitivity
analysis
required?

Call EWSET for
error weight
vector

Yes

(ITASK = 2) Retum to

after one
step?

No

Setgandxl

Set ISTATE = 2
and all optional }«—
output variables

Call DMINTR for sensitivity
coefficients at TOUT

Figure 9.6.—Flowchart of subroutine LSODE, as used by LSENS (adapted from reference 22).

calling program

(ITASK = 1)

Setnew H =

If new NQ, reset € max {HMIN, min (HXR,

HXRMAX, HMAX)}

G ! —
If NQ has been increased, as the last

te scaled R
Set number of convergence 8:(')" gu1)?ths?ier?vative column of z,

failures NCF = 0 and error fiag of Y, and augment
=n

KFLAG =0 .
z,, by column containing SetIALTH=NQ + 1
this derivative vector and RMAX = 10
Check T ‘
value of Set new NQ_. Compute estimated
corresponding to local error in Yp;

:l:g;lnu;;' rSaI:iIO save H, so caller

problem) can change it on
Set method order NQ = 1; and RHUP next step; set
JSTART =1

initialize all variables; set

RMAX =104, IALTH = 2, and -0
flag to indicate that Jacobian {not first SetlALTH =3

matrix J must be updated; I) -
call CFODE to compute call: norma Compute step size
method coefficients {€} for continuation) te ratios RHDN, RHSM,
current method of all orders; Yes and RHUP; if NQ =1,
set £ for current order set RHDN = 0; if
NQ = NQMAX,
Compute predicted se: ﬁ“UP = ‘(’AHDN
. . 0] sel = max y
history matrix z,) RHSM, RHUP)
Call DIFFUN to
compute f (Yﬁ?])
Setnew H=
max (RxH, HMIN), A If NQ has been
rescale 2, 4 and decreased, reset £
Has HE set IALTH=NQ + 1
as Hép

If NQ > 1, set NQ = 1; set
new H = min (0.1H, HMIN);

changed by more
than 30 percent since

last J update or have - call DIFFUN to compute
20 steps been fSI:; ?o-ir?éizfa:?l HY 1) and construct new z,,_q;
taken with must be updated set IALTH = 5 and, if NQ has
same J? been changed, reset £
Call PREPJ, which either calls Set KFLAG =-2
— PEDERYV to update J or constructs to indicate to
N f‘r:tf??ntf’s;"::a‘e it by repeatedly calling DIFFUN, LSODE repeated
undated computes iteration matrix P, and convergence
i either computes P-1 or calls DGEFA, te.st failures or any
or DGBFA to LU-decompose P with H = HMIN

At each iteration m, either compute, or
call SOLSY for, incremental corrector No
error; compute new solution estimate
YiMland corrector error ¢!

Save H to allow @
caller to change it _.-

Set KFLAG =-1to
indicate to LSODE
repeated local error
test failures or any
with H = HMIN

Yes

Increase NCF by 1, set RMAX = 2,
and recover z,, 4

converged
in three or

Decrease KFLAG by 1,
set RMAX = 2, and
recover 2, 4

Compute new NQ and
step size ratio R;
Set R = min (R, 1); if

KFLAG = -2, set
R =min (R, 0.2)
t KFLAG = d
i;date all colgna'l:s Reduce
IALTH by 1
of z,

Figure 9.7.—Flowchart of subroutine STODE, as used by LSENS (from reference 22).

Start

A

Set all thermodynamic,
chemical kinetic,

and flow variables;
compute mixture
mean molar mass

Compute assigned
variable and its
first derivative

For assigned-
temperature problem
compute T and its
first derivative

Call HETRAN
for computation
of heat transfer
rate

Has
T changed
since last update

Compute Mach
number and
first derivative
of dependent
variables

PSR problem
or constant-
density, constant-
temperature
case?

Return

Is heat
transfer rate
required?

of rate
coefficients?

Call THRM for
thermodynamic

Compute species
molar concentrations;
forward, reverse,

and net reaction
rates; and species
production rates

A

properties of
species

Figure 9.8.—Flowchart of subroutine DIFFUN.

28

Compute forward
and backward rate
coefficients

Entry
PDWSR

Start

Y
Check for zero
species

concentrations

Compute partial
derivatives of
species production
rates with respect
to mole numbers,
temperature, and
density

Compute partial
derivatives of
reacting species
derivatives with
respect to
dependent variables

Compute Jacobian
matrix elements of
T, p, and V for
assigned-area flow
problem or of T for
constant-density

Assigned-
pressure
problem?

9.5 Sensitivity Analysis

Compute Jacobian
matrix elements of |
T, p, and, for a flow
problem, V

static problem

PSR problem
or partial
derivatives with respect
to T and p not
required?

»(Retum)=

Figure 9.9.—Flowchart of subroutine PEDERV.

maximum method order that may be attempted on any step,
ande, (=h, Y,— h, X,EO]) is proportional to the local trunca-
tion error vector.

The two user-supplied routines used by the integrator are
DIFFUN, which computes the derivatives, and PEDERYV,
which computes the Jacobian matrix. The structure of
DIFFUN is given in figure 9.1. Flowcharts for DIFFUN and
PEDERY are presented in figures 9.8 and 9.9, respectively.
In these figures p and V are the mixture density and velocity.
To maintain the accuracy of the Jacobian matrix and to pre-
vent overflow errors, PEDERV checks for species with zero
concentration and includes special calculation procedures for
such a situation.

9.5 Sensitivity Analysis

For any static reaction problem the first-order sensitivity
coefficients {S;; (= dYi/on;)} can be computed. Here ¥;is
the numerical solution for the ith (i = 1,...,N) dependent vari-
able, and 7); is either an initial condition value or a rate coef-
ficient parameter (i.e., A, nj, Ej, or ¢j, see eqs. (8.3) and
(8.4)). The sensitivity analysis computations use the
decoupled direct method (refs. 30, 32, and 33), as imple-
mented by Dunker (ref. 34) for isothermal problems and ex-
tended by Radhakrishnan (ref. 33) to nonisothermal combus-
tion kinetics. An important feature of LSENS is that it can

29

9. Code Organization and Description

be used to generate any number of sensitivity coefficients,
from just one initial condition or one rate coefficient param-
eter of one reaction to the full set of all N initial conditions
and all 3NR rate coefficient parameters, where NR is the
total number of reactions. Finally the linear sensitivity coef-
ficients of the temporal derivatives of the dependent vari-
ables (i.e., {ai,»/anj}) can also be computed.

This section of the program reads, processes, and checks
the legality of all input data, solves for the sensitivity coeffi-
cients, and normalizes and prints them when output is
required. Provision is made for the user to specify a cutoff
level, TINY, for the normalized sensitivity coefficients. Any
normalized sensitivity coefficient that is smaller in magni-

Set ISTATE =1

(ICALL = 1)

Sensitivity
analysis
required?

Call DMACHK to
check that enough

Is this
first call

SENDDM?

integration
have to be
restarted on
each call to
SENDDM?

tude than TINY is set equal to zero. For rate coefficient
parameters an option to tabulate and print nonzero normal-
ized sensitivity coefficients in decreasing magnitude is pro-
vided. The list is produced for each dependent variable. The
corresponding reaction number is placed above each normal-
ized sensitivity coefficient. Thus the user has the convenient
option of obtaining a list of reaction numbers in order of
decreasing importance for each variable. Finally, if required,
this section computes, normalizes, prints, and if necessary,
tabulates in order of decreasing importance, the sensitivity
coefficients of the temporal derivatives of the variables.
The 12 subroutines that make up this section are
SENDDM, DFDP, DMACHK, DMINIT, DMINTR,

No (ICALL = 2)

Set ISTATE = 1

Sensitivity
analysis
required?

storage has been
allocated

Initialize sensitivity
coefficients and
first column of
sensitivity history
matrices with
respect to all
parameters

Y
Call LSODE to solve

ODE's either over a
specified integration
interval or for a
prescribed number
»| Of steps

30

¥

‘ Return)

Figure 9.10.—Flowchart of subroutine SENDDM.

Call DMINIT to
initialize first
column of all
sensitivity history
matrices at TOUT,
if output required
at print stations

DMPJAC, DMPRNT, DMSTOD, SENSIN, SNSOUT,
SNSPSC, and SNSTAB. Among these, six routines
(SENDDM, DMACHK, DMINIT, DMPJAC, DMPRNT, and
DMSTOD) were adapted from the May 1984 version of the
code CHEMDDM (ref. 34). Other subprograms that are
required for sensitivity analysis include DIFFUN, PEDERY,
DAXPY, DDOT, DGEFA, DGESL, DSCAL, IDAMAX,
SOLSY, XERRWY, and those used by DIFFUN.

Besides reading, processing, and checking the legality of
all input, SENSIN sets the number of ODE'’s to be solved. In
addition to the ODE’s for nonconstant quantities SENSIN
examines the initial condition parameters with respect to
which sensitivities are required. For example, if sensitivity
coefficients with respect to the initial temperature are
required, the Jacobian matrix elements of all variables with
respect to the temperature must be computed. Therefore,
even if the temperature is constant, the routine includes it in
the ODE list. Similar remarks apply to the density and inert
species mole numbers.

The main subprogram in this section of the code is
SENDDM, whose structure and flowchart are given in figures
9.1 and 9.10, respectively. The internally defined integer
variable ICALL in figure 9.10 denotes if the call to
SENDDM is the first one for the problem or a continuation.
This routine sets the sensitivity arrays at the initial time and
calls DMACHK, which checks that sufficient storage has
been allocated for the problem. SENDDM also manages the
call to LSODE. LSENS includes an option that dictates how
the integration is to be continued after every printout of the
solution: either normally, so that LSODE uses past solution
values in further developing the solution, or by reinitializing
LSODE so that it effectively solves a new problem after ev-
ery printout. If the second option is selected, SENDDM calls
DMINIT to initialize the sensitivity arrays and sets the appro-
priate index that causes LSODE to reinitialize the integration
process.

The routine DMSTOD advances the sensitivity arrays by
one time step. The integration method used to solve for the
sensitivities is the backward differentiation formula, as imple-
mented in LSODE. Predicted values are first generated by
using the Taylor series expansion method devised by
Nordsieck (ref. 24). They are then corrected with the back-
ward differentiation formula method in conjunction with a
single Newton-Raphson iteration, using an analytical Jaco-
bian matrix. At each step DMSTOD uses exactly the same
step size and method order as those used by STODE to inte-
grate the model problem. As for the model problem the solu-
tion history for sensitivity coefficients is maintained in the
Nordsieck history array. Thus for the jth parameter 1y; the
Nx(gp + 1) matrix Z; , contains S; ,, the sensitivity coefficient
vector with respect to 1), and its g, scaled derivatives at 7.

The structure of DMSTOD is shown in figure 9.11, where
the dashed lines connect subroutines included in, or required
by, the LSODE package and the names in brackets are
dummy procedure names. This figure shows that the only

9.5 Sensitivity Analysis

Calling
subprogram,
LSODE
DMSTOD |
A
//,'/ ‘\\
i \
’/ // \\
/// /’/ \\
/// /I \\\
DMINTR |, / \
// // \‘
7’ 4 / AY
// // // \\
z Sy DFDP |
’ /
XERRWV |/ \
/7 AY
’ A)
/ 1 DMPJAC K\
DIFFUN : \
[F] | Y
/ H \
/ ! \
’ I \
4] \
// 1 kY
: SOLSY
DGEFA [SLVS]
7/ T
s 3
’ 7 H 1

/// // i \\‘ :

4 e | AN ‘
PEDERY i DGESL
WAC] ! N .

e : N AN
/ NN/ Y
IDAMAX DSCAL DAXPY DDOT

Figure 9.11.—Structure of subroutine DMSTOD.

additional subprogram needed by the decoupled direct
method to compute sensitivity coefficients is DFDP.
DMPJAC is a simplified version of PREPJ (table 9.1). The
former routine assumes that a specific iteration method
(Newton-Raphson with a user-supplied analytical Jacobian
matrix) is used; the latter is more generalized. DMPJAC can
be replaced with PREPJ, but to do so would reduce the effi-
ciency marginally. DMINTR is based on INTDY (table 9.1)
and computes the sensitivities and their derivatives at the
output stations.

The flowchart of DMSTOD is presented in figure 9.12,
which illustrates how the Nordsieck history matrices for the
sensitivity coefficients are advanced over the step [f,—1,f,].
In this figure Z]I,(,),] is the predicted history matrix for the jth
parameter at ¢,, P is given by equation (9.3), and the vector
Zjn—1(1) contains the scaled first derivative of §; ,-1
(ie., hySjn~1). LSENS contains an option that controls how
often the Jacobian matrix is updated when solving for the
sensitivity coefficients: either on every step or only on those
steps for which STODE performed this update for the model
problem.

31

Get solution
vector Y, from
history array
2z, for model
problem

Was
J updated
by STODE

on last
step?

Call DIFFUN
to compute

1(Yp)

Call DMPJAC,
which calls
PEDERV for J,

computes P,
and calls DGEFA
to LU-

decompose P

Write error
message

Need
sensitivity
with respect to rate
parameters?

Call DIFFUN
to compute

1Y)

Call DFDP
to compute

{of/amp

Does
Jacobian
matrix J have
to be updated
on every

1st order
method used on
last step and to be
used on next

Was

step size
changed on
last step

Compute the
scaled (q + 1)th
derivative of

8;,» and augment
Z; , by a column
containing this
vector

parameters?

32

Rescale
sensitivity
Need history matrices,
sensitivity {Zj 01}
wrt rate '

Set{Z;, (1)}
=0

Set
sensitivity

Yes

Return

History
matrices
updated for all
parameters?

Higher
order method
to be tried on
next step by
STODE?

Update all
other columns
of Zl',n

Compute S; ,

parameter
number j =1

Figure 9.12.—Flowchart of subroutine DMSTOD.

Co(r)npute
zf]

Increase j
by one

9.6 Chemical Equilibrium
Computations

The code has built-in procedures for computing the equi-
librium composition for the following four assigned states:
(1) temperature and pressure (TP), (2) mass-specific enthalpy
and pressure (HP), (3) temperature and specific volume (TV),
and (4) mass-specific internal energy and specific volume
(UV). For cases 2 and 4 the equilibrium temperature is also
determined. The code automatically performs the appropri-
ate type of equilibrium calculation, as discussed here.

The main subprogram in this section is COMB, which
manages the equilibrium computation, calls for output of
results, and prints the computational work required. The
other routines used in this section, whose structure is given in
figure 9.13, are ELEMNT, EQLBRM, GAUSS, MATRIX,
SECCPU, SPOUT, and THRM. COMB examines the vari-
able TCONST, which is set in KINP and indicates whether
the kinetics problem following the equilibrium calculation
is at constant temperature, and sets the appropriate switch,

9.6 Chemical Equilibrium Computations

TP or HP, to indicate to EQLBRM whether an assigned-
temperature equilibrium computation is required. It also ini-
tializes the estimates for the equilibrium mixture composition
and, if necessary, the equilibrium temperature.

The equilibrium computations are performed in EQLBRM,
which was adapted from the code CET (ref. 11). The routine
selects the equilibrium problem type by examining the
switches HP, TP, and RHOCON, which indicates if a con-
stant-density kinetics problem follows the equilibrium com-
putation. The equilibrium state is obtained by minimizing
either the Gibbs or Helmholtz function. The resulting alge-
braic equations are solved by using a descent Newton-
Raphson iteration method (refs. 10 and 11), which automati-
cally limits the size of the corrections at each iteration to
avoid convergence difficulties. Also, to prevent negative
concentration and temperature, the code solves for the
logarithm of the variables. A flowchart of the calculation
procedure is given in figure 9.14, where V, T, and p are, re-
spectively, the mixture mass-specific volume, temperature,
and pressure.

Calling
subprogram,
KINP
comMB
SPOUT
SECCPU (Ecoum
EQLBRM
ELEMNT
System
clock
THRM GAUSS MATRIX

Figure 9.13.—Structure of chemical equilibrium section.

33

143

Start
{ For HP and UV
problems call Apply
THRM to update convergence
Call ELEMNT frozen mixture tests
to compute element specific heat
concentrations in
initial mixture
Apply control .
factor to lteration Number Print
corrections converged? of iterations error
Set initial and get new <507 message
estimates for estimates
all species
concentrations T
and, for an Calculat Wit
HP or UV alculate For TP and TV e emor
problem, the control problems ?:" GIC\UfS S Singular “\ Yes zwe.ssage; set d
temperature factor update frozen solve for matrix? erivatives an,
mixture derivatives equilibrium mixture
T specific heat specific heat
Call THRM Compute
to get corrections for]
thermodynamic species
properties concentrations Compute all
Call MATRIX Call MATRIX Compute “‘rf,"‘;:’tf‘g':z?“c
to set up matrix to set up matrix appropriate un?librium
for (dIn v/a! jvati
Begin iteration; Increase (9In v/3in T), for (dln v/3In p)t derivative mixture
set number of pumb.er of
iterations = 0 iterations
by one
Caltl
comN;I)Au-tr: ilt)((e::t' Have both Print
ion . No .
matrix Smgm_:l::r Second such derivatives been solution
matrix? occurrence? computed?
A

Call GAUSS
to solve for

(Return)

Reset

corrections

Write
restart
message

concentrations
of "trace"
species

Figure 9.14.—Flowchart of equilibrium calculation procedure (subroutine EQLBRM).

9.7 Incident Shock Computations

LSENS includes an option to compute the thermodynamic
state and velocity behind an incident shock. Two types of
computations are performed. First, the code solves for the
“equilibrium” shock conditions when the shock-initiated
reactions have equilibrated. The second calculation pro-
duces the “frozen” shock conditions immediately after shock
passage when the composition is unchanged from its initial
value.

The main subprogram in this section of the code is SHOK,
which manages the shock computation, calls for output of
results, and prints the computational work required. It also
sets the type of shock computation, equilibrium or frozen, to
be performed. Figure 9.15 gives the structure of this section,
which uses the routines ELEMNT, EQLBRM, SECCPU,
SHOCKS, SPOUT, THRM, and those called by EQLBRM.

The routine SHOCKS, which was adapted from CET
(ref. 11), sets initial estimates for both postshock conditions.
It also computes both states by solving the mass, momen-
tum, and energy conservation equations. A Newton-
Raphson iteration procedure, which automatically limits the

Calling
subprogram,
KINP
SHOK
SPOUT
(ESOUT,
FSOUT)
SECCPU
SHOCKS
System
clock
THRM EQLBRM ELEMNT

Figure 9.15.—Structure of incident shock section.

9.7 Incident Shock Computations
size of the corrections to minimize convergence difficulties,
is used. In order to avoid negative variables during the solu-
tion procedure, the equations are cast in terms of the loga-
rithm of the variables. Figure 9.16 presents the flowchart of
SHOCKS. In this figure the internally defined logical vari-
able EQL is used to denote the type of shock calculation, and
L,, is a characteristic shock tube reaction length required for
the post-shock kinetics problem. After the frozen shock con-
ditions are successfully computed, L,, is calculated by
SPOUT if the user has not provided a value for it.

Starting with the frozen shock state the code follows the
progress of the chemical reaction in the shocked gas by inte-
grating the ODE’s describing one-dimensional flow with
assigned area over a prescribed time or distance interval. The
flow area profile is given by a special function, which cor-
rects for frictional losses (refs. 35 to 37):

AR _ 1
A - (we,,)

4

In this equation A(x) is the area at distance x, A is the shock
tube cross-sectional area, L,, is a characteristic length, and
the exponent 1) is either 0.5 for a laminar boundary layer or
0.8 for a turbulent boundary layer.

The length L,, also depends on whether the boundary layer
is laminar or turbulent. It may be specified by the user or is
computed by the code as follows (refs. 36 and 37):

1 I
dg In(py](Vi)(P pstcsl) n
Ly =|28 M 2] |y, 2L Pailsr ©.5)
" (43) (Pz -%v 1Pst Hge

In this equation dy (= 4A,/L,, where L, is the shock tube
perimeter) is the shock tube hydraulic diameter; B is a bound-
ary layer thickness parameter; M (= V/c, where c is the sonic
velocity) is the Mach number; pg, is a standard pressure, for
example, 1 atmosphere; and L is the mixture dynamic viscos-
ity. The subscripts 1 and 2 refer, respectively, to conditions
upstream and downstream of the shock, using a coordinate
system attached to the shock, which is therefore stationary.
Thus the unshocked gas flows into the shock at velocity Vq,
and the shocked gas flows away from it at velocity V.
Finally the subscript “st” denotes standard conditions and the
quantity pgcet/tst is assumed to be the same as pyci/iL;.

35

9¢

Start Recover initial
. mixture composition;
i?:gt? on: set set initial temperature
E;]qui!li(brium i :um?er of 0 ?:tci’ozr::zu;:timates
shoc| iterations =
calculation;
-?-;tUEEQL) Apply control factor
to corrections and
Increase compute new estimates If necessary,
number of of temperature and set new
iterations pressure ratios; also, control factor
Call ELEMNT to by one calculate new
compute element temperature and
concentrations pressure estimates
in initial mixture isr:/te‘rjtppaa:tcijal
Call THRM derivative
matrix
Equilibrium No to get
Set mixture shock thermodynamic ¥
enthalpy and calculation? properties at new
initial estimates temperature Compute
for all properties corrections
and temperature
and pressure l
ratios
Apply
calculation convergence
test
Call EQLBRM
for HP equilibrium
state
Equilibrium Yes Yes Iteration
calculation converged?

successful?

Equilibrium
calculation
successful?

3
Compute all
thermodynamic
properties

and flow
variables

Number
of iterations
=307

Print
solution

Print error
message

Yes

Recover initial
mixture enthalpy
and compute

Frozen shock
calculation;

Frozen shock

set EQL =
FALSE

state computed?

neyv temperature Ret If necessary
ratio eturn calculate L,

Figure 9.16.—Flowchart of incident shock calculation procedure (subroutine SHOCKS).

9.8 Perfectly Stirred Reactor
Computations

Perfectly stirred reactor computations can be performed for
either a specified mass flow rate or a specified reactor tem-
perature. In the former case the code solves for the mixture
composition and temperature at the reactor exit. In the latter
case the mass flow rate and the reactor exit mixture composi-
tion are computed. The problem type is identified by exam-
ining the user input parameters required for problem
solution, and so a separate switch need not be set.

The main routine in this program section, whose structure
is shown in figure 9.17, is WSR. The other routines required

Calling
program,
MAIN
WSR
ouT2
(OUTSTR)
GAUSS
SECCPU
System
clock ELEMNT WSOUT
PEDERV
EQLBRM (PDWSR)
DIFFUN
(DIFFW)
THRM
HETRAN
(HTWSR)

Figure 9.17.—Structure of perfectly stirred reactor section.

9.9 Error Messages

by this section are DIFFUN, ELEMNT, EQLBRM, GAUSS,
HETRAN, OUT2, PEDERV, SECCPU, THRM, and
WSOUT. The flowchart of WSR is given in figure 9.18,
where m, T, and 7, are the mass flow rate, temperature, and
residence time, respectively. Also 71 is the mass flow rate
that is specified for the first solution of an assigned-mass-
flow-rate problem, and T} and riig are the prescribed tem-
perature and mass flow rate to start iteration, respectively, for
the first solution of an assigned-temperature problem. Finally
Tq is the equilibrium temperature for the reactor inlet state.

For both problem types WSR solves the governing nonlin-
ear algebraic equations by using a Newton-Raphson iteration
technique, which automatically limits the size of the correc-
tions to reduce convergence difficulties. Also, to avoid nega-
tive results, the code solves for the logarithm of the variables.
Starting with conditions close to the equilibrium state, a
series of perfectly stirred reactor computations is performed
until the desired mass flow rate or reactor temperature is
reached. This technique is used to minimize the possibility
of convergence to a false solution—one that is mathemati-
cally correct but physically unrealistic. The routine includes
several tests and, when necessary, restarts of the calculation
to ensure that the solution is physically meaningful. Finally
it includes tests for possible blowout of the chemical reaction
within the reactor.

9.9 Error Messages

The code contains many error messages—too numerous to
list here. Every input parameter is tested for legality and
consistency with the other input variables. If an illegal input
parameter is discovered, a detailed message is printed. Each
error message is self-explanatory and complete. It not only
describes the mistake but tells the user how to fix the prob-
lem. During execution some tests are made to ensure that
variables are within either given or reasonable bounds. Any
difficulty encountered during execution will result in an error
exit. A message giving the reason for the termination and the
name of the subprogram where the problem occurred will
also be printed. If the computation stops prematurely, the
user should look for the error message near the end of the
output file.

37

8¢

Save.converged Assign new
Call solution for ForT
GAUSS to Write error possible restart
Initialize solve for message T
variables and corrections
savzlltr_\ fial Yes oflss:::;l;:\:ul Print convergence
conditions
If debug output If debug output been reached? convergences number, number of

Call ELEMNT

required, write
species production

Call OUTSTR

Call PDWSR to
compute partial
derivatives of

required, write
current values

‘ Return

compute new
estimates and
mass fraction

>17?

iterations, m, T,
and 7,

s number

rates and right- of variables
and EQLBRM to nang and their
compute initial hand sides of i Has
estimates governing equations corréctions Call WSOUT \ Yes “Yesired m
to print or T been Increase m; recover
. [} gon:pllﬂe results eached? previously converged
et up Ontrol composition and, for
rtial factor iar
Call DIFFW to pal tial assigned-mass-flow-
compute species derivative rate problem, previously
. matrix Apply control converged T T
production rates factor to Is oqtput g Increase m;
corrections and required? Yes recover equilibrium

composition and
No | either Toq or Ty;
reset number of

to print species rates sum of successful successful con-
equilibrium 1 Increase gonvergences No vergences = 0
conditions number of
Compute new If debug output Write error successful
Set initial mixture enthalpy required, write message convergences
composition and right-hand values f’f by one
estimate = sides of correction factor
equilibrium governing and mass M— N Write
composition; print equations fraction sum error
equilibrium mole A Y s T< message
numbers and if debug If expanded debug revions! I -
temperature output required, option selected, gonver eﬁ | nfcrea:ef n'um er
] write current write net species 9 of such failures
¥ T? by one and write
Begin iteration; Tand m rates and pro-
set number of [} duction rates eTTor Message Retumn
iterations and Increase of each species
successful number of by each reaction
convergences = 0 iterations by No IsT> Resigned®
! = blowout mass-flow-rate Print out all
Set iy temperature? problem? intermediate
or Ty and rhy; Call DIFFW fraction sum Is mass results and
if assigned- to get species different from fraction sum error message
temperature production unity by more equal to unity
problem, check rates than 20 within
legality of Ty percent 3x10752 . No
? Apply other lteration
convergence converged? of iterations

tests

Begin iteration;
set number of
iterations = 0

Figure 9.18.—Flowchart of perfectly stirred reactor calculation procedure (subroutine WSR).

Chapter 10
Code Implementation

The LSENS package may have to be modified to make it
compatible with the user’s computer system and computa-
tional requirements. The modifications are classified into
two categories, (1) those that must be made before the
present version of the code can be used and (2) those required
to enhance the computational capabilities of the code. In this
chapter we describe the first category of modifications. We
also discuss certain optional changes that may be made. We
then list parameters that place restrictions on the size of the
problem that can be solved with the present version of the
code. The code adjustments needed to alter the built-in val-
ues for these parameters (i.e., the second category of modifi-
cations) are, however, described in appendix C. We conclude
this chapter with a brief note on restrictions that may have to
be placed on the optimization level when compiling subrou-
tine KINP (see table 9.1).

10.1 Computer Language

The code is compatible with most FORTRAN 77 compil-
ers. However, it contains detailed instructions on how
to convert it to FORTRAN 66, as discussed in chapter 9
(section 9.1).

10.2 Suppressing Underflow
Error Messages

The MAIN program includes a system call to suppress
underflow error messages. The form of this call used in the
present version of LSENS is

CALL ERRSET (208, 256,-1,1, 1)
where ERRSET is a VS FORTRAN-supported subroutine

that enables the user to control execution when error condi-
tions occur. The number 208 is an IBM-designated code for

underflow. On other systems the call may have to be
changed or deleted. For example,

CALL ERRSET (74, . TRUE., .FALSE., FALSE., FALSE.)

is appropriate for VAX computers.

10.3 Function SECCPU

The function SECCPU, which computes the incremental
central processing unit (CPU) time in seconds (see table 9.1),
may have to be replaced. This function calls the system
clock and is given for several common computing systems in
appendix B.

10.4 Modifying Subroutine XERRWYV

The routine XERRWYV, which prints out error messages
from the LSODE package and the sensitivity routines
DMACHK, DMINTR, and DMSTOD (see table 9.1), is
machine and language dependent. Therefore the data-type
declaration for the argument MSG, which is a Hollerith lit-
eral or integer array containing the message to be printed,
may have to be changed, as described in reference 22. How-
ever, the routine itself gives the necessary modifications for
many machine environments.

10.5 BLOCK DATA Variables

The next modification concerns the values assigned to the
variables SMEST, TESTNO, THCX(3), and THDCX(1) in
the BLOCK DATA module. The double-precision variable
SMEST (current value, 1.0D-35) is used in normalizing sen-
sitivity coefficients. Any dependent variable ¥; that is smaller
in magnitude than SMEST is set equal to SMEST to avoid

39

10, Code Implementation

computational difficulties caused by an excessively small (or
zero) Y;. The real variable TESTNO (current value,
—1.0E+35), which is essentially —co, is the value used to
initialize several variables, such as the print stations, that is,
distinct points at which the solution is required. Both SMEST
and TESTNO may be changed by the user. The double-
precision variables THCX(3) (= 2/3) and THDCX(1) (= 4/3)
are used to compute certain thermodynamic properties and
may be changed to make them consistent with the precision
of (i.e., number of decimal digits considered by) the machine.

All logical unit numbers for input and output are also set in
the BLOCK DATA and may be changed by the user. The
logical unit numbers used for input are as follows: First, a
data file containing thermodynamic data for the species must
be made available on unit LTHM, whose current value is 4.
Second, data for the user’s problem are read from unit
LREAD, which is currently 5. This data type includes the
chemical reaction mechanism, keywords identifying the
problem to be solved, initial conditions, etc. Thermodynamic
data may also be included in this file, in which case they are
copied onto a separate scratch file associated with the logical
unit LSCR, whose present setting is 9. Subsequently, these
coefficients are read from unit LSCR. All other data are cop-
ied onto, and later read from, a separate scratch file, which
must be made available on the logical unit LDAT, which is
currently 7. Finally, if transport properties are required for the
problem, the necessary data are read from the logical unit
LTRAP (current value, 8).

Summary information regarding storage and work require-
ments for sensitivity analysis from the routine DMPRNT and
all error messages from the routine XERRWYV are sent to the
logical unit LUNIT, which is currently 6. Al other output
information is directed to the logical unit LWRITE, whose
current value is also 6.

10.6 Reducing Storage Requirement

The final code modification concerns computer memory
requirement. If the sensitivity analysis option is not required
and computer storage is of concern to the user, the lengths
LRW and LIW of the real and integer work arrays RWORK
and IWORK, respectively, may be decreased to the values
indicated in the code. The dimensions of RWORK and
IWORK must also be decreased to the values given in the
code. The storage requirement may be further reduced by
replacing all sensitivity subroutines except SENDDM (see

40

chapter 9) and the common blocks SENNAM, SENNOR,
SENPAR, and SENSOL with dummy versions or, if allowed
by the loader, even eliminating them. If SENPAR is either
deleted or replaced with a dummy version, the EQUIVA-
LENCE statement in subroutine RXNTAB must be deleted.

The present version of the code makes no use of the rou-
tines RSCOM, SVCOM, XSETF, and XSETUN (see
table 9.1), which may all be deleted if the user intends to use
LSENS solely as a black box that provides solutions to kinet-
ics and sensitivity analysis problems. In addition, if the itera-
tion techniques given by MITER = 4 and MITER = 5 (see
table 9.5) will not be used, the routines DGBFA and DGBSL
may be replaced with dummy routines or even eliminated, if
allowed by the loader. Finally, if parameters related to prob-
lem size are smaller than the built-in values (see section
10.7), the modifications described in appendix C may be
made to decrease the storage requirement.

10.7 Code Limitations

The present version of LSENS allows for a maximum
number of 50 (reacting plus inert) species participating in a
maximum number of 250 reactions, of which up to 35 may
be of the third-body collisional type. The maximum number
of elements (atoms, etc.) that can be used for any problem
is 15. However, a species may contain no m